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ABSTRACT

The kind of prior typically employed in Bayesian vector autoregression (BVAR) analysis has
aroused widespread suspicion about the ability of these models to capture long-run patterns.
This paper specifies a bivariate cointegrated stochastic process and conducts a Monte Carlo
experiment to assess the small sample performance of two classical and two Bayesian
estimation methods commonly applied to VAR models. In addition, a proposal to introduce
a new dimension to the prior information in order to allow for explicit account of long-run
restrictions is suggested and evaluated in the light of the experiment. The results of the
experiment show that: (i} the Minnesota-type prior with hyperparameter search performs
well, suggesting that the prevalent suspicion about the inability of this prior to capture long-
run patterns is not well-grounded; (i) the fine-tuning of the prior is crucial; and (iii) adding

long-run restrictions to the prior does not provide improvements in the case analyzed.






1. INTRODUCTION

For many years it has been recognized that most economic time series exhibit trending
behavior, implying that they are non-stationary. However, economic theory rarely suggests
equilibria that are not stationary functions of the variables involved. As a consequence, a
widely held view is that there should be fundamental economic forces, such as a market
mechanism or government intervention, which make some economic variables move
stochastically together. Standard examples include the relationship between real wages and

productivity, long and short-run interest rates and nominal exchange rates and relative prices.

This interest in models that capture the belief of close relations in the long-run has
led to extensive research in the econometric and statistical literature. Cointegration has been
studied, inter alia, by Granger (1981), Granger and Weiss (1983), Engle and Granger (1987)
and Johansen (1988, 1991a)'. Box and Tiao (1977) introduced canonical analysis whereas
Pefia and Box (1987) proposed dynamic factor analysis. The methods of reduced rank
regression were originally applied to the study of non-stationary series by Velu, Reinsel and

Wichern (1986) and Ahn and Reinsel (1990).

However, this focus on common non-stationary trends among economic time series
has received so far surprisingly little attention by econometricians following the work of
Litterman (1980, 1984), Doan, Litterman and Sims (1984) and Sims (1989) despite its

interest having been recently pointed out by Sims (1991a).

A reason for this neglect may lie in some recent research which casts doubt on the
practical and theoretical usefulness of unit root econometrics. Specifically, Sims (1988) and
Sims and Uhlig (1991) point out the discrepancy between classical and Bayesian inference
in time series models with possible unit roots, drawing attention to the fact that inference

based on the likelihood principle (e.g. Bayesian) is robust to whether or not the data are

' See Banerjee, Dolado, Galbraith and Hendry (1993) for a thorough treatment of the literature on
cointegration.




stationary. They take the position that Bayesian inference is more reasonable and simple to
implement®. Sims, Stock and Watson (1990) show that even if one takes the classical
approach to inference, standard asymptotic theory is valid more often than expected.
Christiano and Eichenbaum (1990) point out that it is impossible to discriminate on the basis
of finite samples between difference stationary and trend stationary stochastic processes local
to each other; Campbell and Perron (1991) emphasize that the same principle applies when
comparing the classes of cointegrated and non-cointegrated processes’. Finally. Quah (1992)
shows that there is no relationship between unit roots and the relative importance of

permanent and transitory economic disturbances, which is what matters from the economic

theory point of view.

Taken together, one implication of the above literature is that in doing classical
econometric analysis in a non-stationary framework, the analyst is using a controversial
approach to inference to discriminate among alternatives that canmot be consistently
distinguished on the basis of available information; in particular. if the search for
cointegration is part of the analysis, the analyst may end up imposing with certainty some
false long-run restrictions on the behavior of the time series vector. Furthemore. the effort

does not provide knowledge about the importance of permanent economic driving forces.

On the other hand, the usual type of prior in BVAR models is characterized by taking
coefficients across variables and equations to be independent of each other, so no explicit
prior account of long-run relations among variables is considered. This fact. coupled with
the randoem walk type prior mean used in earlier applications, tends to raise the suspicion that
the resulting estimation will be biased towards systems of univariate AR models. Clements
and Mizon (1991), Liitkepohl (1991) and Phillips (1991b) unfavorable criticism of BVAR

models goes in this direction.

I Phillips (1991a). also with a Bayesian approach, challenges the methods, the assertions and the
conclusions of these articles on the Bayesian analysis of unit roots. Nevertheless, see also the comments
by eight discussants in the same issue of the Journal of Applied Econometrics.

*  The fact that the determinarion of the number of cointegrating vectors is not straightforward using only
formal testing procedures is often recognized in applied work. See, inter alia. Johansen (1992a),
Johansen and Juselius (1992}, Juselius (1992, and Reinsel and Ahn (1992).



This paper tries to assess the validity of the above mentioned criticism, frequently
leveled at BVAR models when it is suspected that there may be close relations in the long-
run among the variables considered. The paper also explores the addition of a new dimension
to the usual type of prior in order to take into account explicitly the possibility of there being
stochastic long-run patterns in the Bayesian prior. To this end. we proceed in two stages.
First, we implement the maximum-likelihood procedure proposed by Johansen. Second, we
use the estimation results of the first stage to incorporate a set of stochastic linear restrictions
into the prior of the coefficients of our model in order to introduce flexibility in the

specification and allow the data to depart from the plausible cointegration restrictions.

The reminder of the paper is organized as follows. In section 2 we describe the
statistical model. In section 3 we discuss how to combine the cointegration restrictions with
other available prior information on the coefficients. In section 4 we compare alternative
estimation methods, included the one proposed, through a bivariate Monte Carlo experiment.

Section 5 states the conclusions.



2. A REVIEW OF BVAR MODELS

We assume that our set of economic time series is a realization of a n-vector

stochastic process, Y, which for all ¢ satisfies the model
Y = B(L)YY(®) + DX(t) + () t=1,.,T (1)

where B(L) = B,L + ... + B, L™ is a nxn matrix polynomial in the lag operator
L [L}Y(t) = Y(t-k)/, m is the number of lags allowed, X(z) is a dx] vector of deterministic
variables, D is a nxd matrix of coefficients for the deterministic variables and ¢(f) is a mxl]

vector Gaussian white noise process

e(® ~ N, ¥) 2

The i-th equation of model (1), abstracting from deterministic components, is

Y@ = by Y,(t-1) + .. + by, Y,(t-m) +

+ by Y (61 + o+ by Y (t-m) + 3
0

To simplify the presentation we stack up all the coefficients of the n equations of the

VAR in a vector # with individual elements b;s and d,i , where i refers to the equation,
J to the variable, s to the lag and / to the deterministic component (i = 1, ..., n, j = 1,

ons=1, ..., m =1, .., d). The first m coefficients of the vector correspond to

the first equation and first variable, the following m coefficients to the first equation and the

second variable, the coefficients from nm-+1 to nm-+d to the determnistic variables of the

first equation and so on. Therefore b is a n(nm-+d)xl vector®.

With n(nm-+d) parameters the exhaustion of degrees of freedom is an important

consideration. To overcome the problems associated with overparametrization, Litterman

*  Note that the vector b is not indexed by t. For notational convenience we do not consider time-varing
parameters as it is customary in the BVAR literature. See, for example, Sims (1991a) and Canova
(1993).




(1980) and Doan, Litterman and Sims (1984) suggested the use of a Bayesiar estimation
approach in which the sample information is combined with some a priori information on the
coefficients to derive a posterior distribution. Their suggestion of using a prior comes from
the fact that equations with too many free parameters tend to pick up excess noise, whereas
equations with too few parameters fail to pick up the signal. The specification of a prior then
provides a flexible format through which one can confront the trade-off between overfitting
the data and increasing signal extraction capabilities. The approach can also be thought of

as imposing "fuzzy" restrictions on the coefficients of the model rather than employing

exclusion restrictions.

To this end, vector b is given a multivariate normal prior density function with mean

b and variance-covariance matrix Eb

b~NbZ,) (4)

This prior neither attempts to reflect personal knowledge nor be based on economic
theory. Instead, it intends to capture empirical features that can be widely accepted by many
researchers. Furthermore, to reflect the uncertainty about these features, the prior distribution

is made to depend upon a low-dimensional vector 7 of hyperparameters.

It has to be recognized, however, that from a strict Bayesian standpoint our prior
information should not contain unknown parameters (the elements of 7); we should also
attach a prior distribution to them. A full Bayesian implementation would require to specify
that distribution and then go through the appropriate integration process to obtain the
posterior distribution. However, two shortcuts to this computationally demanding procedure
are usual practice in the BVAR literature. The first is based on what we will refer to as
"standard prior” and consists in using the posterior associated with a specific setting of 7
reflecting some empirical rules of thumb concerning time series behavior. The approach
actually amounts to assuming that 7 is a degenerate random vector with probability weight
one on the specific choice. The second, suggested by Doan, Litterman and Sims (1984) and
based on what we will call "optimal prior”", is to employ the posterior associated with the
hyperparameter setting that maximizes the conditional sample pdf. As expiained by these

authors, under the assumption that the density of the hyperparameter vectos s flat in some



hypercube, the suggested approximation is good if for the set of hyperparameter vectors for

which the conditional sample pdf is large. the associated posterior does not change much.

The basic idea of this second approach is to specify a relatively unrestricted vector
autoregression and a prior that can be varied along several dimensions (the elements of 7)
affecting the trade-off between overparametrization and oversimplification. The consideration
of the likelihood as a function of movement in these dimensions is then used to find the
optimal balance. In effect, these hyperparameters are used to fine-tune the prior, which then

acts as a filter to extract as much information from the data as possible.

Turning to the specifics of the prior, it has been a common practice to incorporate
into it the fact that most economic time series can be roughly approximated by a simple
random walk model with drift. This has led many researchers, especially in earlier
applications [see, e.g., Litterman (1986}], to consider the prior mean for all the coefficients
as zero, except for the first lag of the dependent variable which is taken to be one; i.e.

' 1 i=j, s=1
o= (5)

s 0 otherwise

or, more generally, an unknown component of the hyperparameter vector r [see, e.g.,
Ballabriga (1988)]
Ty i=], s=1

b, = (©)
0 otherwise

=1

Quite recently, Sims (1989) has recognised that many BVAR models include variables
determined in auction markets, such as exchange rates, that should be the object of a special
treatment. Instead of using a discrete time random walk prior, Sims has proposed the discrete
specification resulting from the time averaging of a random walk process operating on a
shorter interval. If the true random walk is defined over an hourly interval but the estimation
is carried out with monthly averages, then we get an ARIMA (0, 1, 1) with moving average

parameter © = 2 - /3. This process can be represented as an infinite autoregressive process

-10-~



which can be truncated at the longest lag allowed to obtain a new prior mean’.

The initial prior usually makes the individual components of the vector & independent

of each other®; i.e. it makes the covariance matrix ¥, diagonal and sets the diagonal

elements according to

2 T, .
oy (8) = g i=] i=1.,n
s‘: § = 1, ., In (n
2 T,Ty o,? .
6, (s) = 3 L] b=lon
R =L on ®
s=1 .,m
2 B 2
o; & = 11,0 i=1..,n (9)
! = 1) ] d

where i refers to the equation, j to the explanatory variable and s to the lag. Here, a,-2 and oj2
are parameters measuring the scale of fluctuations in variables i and j, usually taken in

practice as the squared residual standard error from a univariate AR(m) model. 7, represents
the prior overall tightness. 7, controls the tightness of own lags relative to the tightness of
lags of the other variables in the equation. Thus, if it is below one, it allows the imposition
of a tighter prior on lags of the other variables in the equation. In the limiting case, if 7,
equals zero, we are considering univariate AR(m) processes. It should also be noted that the
ratio of variances is present in (8) to take into account the units of measurement of the data.
The hyperparameter 7, controls for the lag-decay in the prior variance. If it is greater than
or equal to one it tightens the standard error as the lag increases, thus making coefficients

on more distant lags less likely to be large. Finally, 7, controls the deterministic variables

s If nonseasonally adjusted macroeconomic series are available then the extensions of Canova (1988,
1992) and Raynauld and Simonato (1993) should be considered.

¢ Sometimes the prior is modified to allow for some kind of dependence amoeng own lag coefficients.
See, e.g., Sims (1989), Canova (1992) and Ballabriga (1988). Sims (1991a) also suggests a
modification to allow for dependence across variables as a way to "leave more room for long term
cross-variable relationships”. We are not aware, however, of any application allowing for prior cross-
equation restrictions.

-11-



tightness. In practice, however, more than one hyperparameter is employed to control the
deterministic variables. For example, the constant term may have one associated

hyperparameter and a linear trend a different one.

Having specified the model, prior and sample information are to be combined
according to Bayes rule to obtain a posterior distribution. The Kalman filter provides a
convenient device for this purpose. As the prior depends on the particular setting of the
hyperparameter vector 7 so will the posterior. As has been argued above, the analyst may
search for the hyperparameter vector that maximizes the likelthood. For estimation purposes
two things should be noted. First, whereas ordinary least squares is fully asymptotically
efficient for an unrestricted VAR because the same explanatory variables appear on the right
hand side of each equation, this is no longer the case with the type of prior information being
considered. Therefore, there are gains from treating the equations of the system jointly, and
a multivariate version of the Kalman filter should be employed. Second, the hyperparameter
searches for likelihood maximization are usually handled with a nonstandard hillclimbing
routine, BAYESMTH described in Sims (1986). The program fits a surface to the observed
likelihood values to generate a guess for the location of the function’s peak. This
hyperparameter vector is then used to compute its likelihood through the Kalman filter. The
algorithm updates the likelihood surface and then proceeds iteratively until convergence is
obtained. A convenient feature of this routine is that it not only solves the maximization
problem but also provides an approximation to the likelihood’s shape, which is useful to

assess the quality of the posterior approximation.

—12-



3. INCORPORATING COINTEGRATION RESTRICTIONS INTO THE PRIOR

In the previous section we have described a prior which placed no emphasis on the
possibility of there existing stable long-run relationships among the levels of the non-
stationary variables considered. In this section we propose a way to modify that prior in

order to allow for explicit prior account of potential long-run restrictions.

We start by re-arranging model (1) to yield the representation

AY(®) = T\ AY(t-1) + .. + T, AY(@-m+1) - O¥(t-m) + e(t) (10)

where A is the difference operator /AY(r) = Y{(1) - Y(r-1)] and the deterministic components

X(1) have been omitted for presentation purposes. We also have that

r=- (1—):3'} s =1 ..,ml (11)

=1
and

=1-B = I-B(l) (12)

i=1

Model (10) is expressed as a traditional first difference VAR model except for the
term I1Y#-m) which may contain information about the long-run relationships among the
variables in Y(t). If we assume that Y(¢) is integrated of order one, I(1j for short, then AY(t)
is /{0), and for the system to be balanced (in the sense that the right hand side variables be
of the same order of integration as the left hand side variables) it has to be that either IT =
0. in which case there is no long-run relationship between the variables and we are left with
a traditional first difference VAR model, or ITY{r-m) is a stationary variable. The latter case
applies when the variables in Y(?) are cointegrated, and in turn implies [see Johansen (1988)]
that the rank r of the II matrix is less than the number of variables in Y{r). Specifically, this
rapk, also referred to as the order of cointegration, is equal to the number of distinct
cointegration vectors linking the variables in Y(r). The hypothesis of cointegration is thus the

hypothesis of reduced-rank of the long-run impact matrix IL

-13-



As it is clear from (I2), the entries of IT are linear combinations of the coefficients
of the VAR. This suggests the following two-stage estimation procedure for our model when

it is suspected that long-run relationships may characterize the stochastic process under

analysis:

@) Estimate II using standard classical cointegration techniques.

(i1) Use the estimated II to define a set of linear stochastic restrictions on the
coefficients of the VAR and combine them with (4) to obtain a modified prior.

As we have already mentioned in the introduction, the idea of the procedure is to
allow explicitly for stable long-run relationship among the levels of certain economic

variables while taking into account the uncertainty that surrounds the specification of the

model.

Among the several methods existing in the literature to estimate cointegrating
relations, we opt for Johansen (1988, 1991a) procedure to implement stage (i). There are
several reasons for this choice. First, Phillips (1991c) has theoretically shown that the best
way to proceed in the estimation of cointegrated systems is full system estimation by
maximum likelihood incorporating all knowledge about the presence of unit roots. Johansen’s
is a FIML approach to cointegration that proceeds along these lines. The procedure is based
on a full specification of the vector time series and gives a joint description of both the short-
run and the long-run dynamics of the system. Second, when more than two series are being
considered more than one stable linear relationship can exist. Therefore, it is important, as
does the Johansen’s procedure, to relax the assumption that the cointegration vector is
unique. Finally, it appears that, in general, the procedure performs better in finite samples
than other procedures, offering good results even when the errors are non-Gaussian or when

the dynamics are unknown [see Gonzalo (1991)].

As for the implementation of stage (ii), notice first that the long-run impact matrix

has the form

~14-



1-Y0b = Y by, e -3 b,
s=1 s=1 s=1
II = . . . . (13)
m m
B Y 37 A 1- Y8
5=1 =1 s=1

So if we employ Johansen’s estimate of II (IF in what follows) under the hypothesis
that there are 7 cointegration vectors, we have a rank r matrix defining nxn linear restrictions

on the coefficients of the VAR which can be written in the form
Qb =gq (14)

with O a n’xk matrix, k = (mn+d)n. and g a n’xI vector. The form of the Q matrix is

A O .. O
0 4 .. O
Q= (15)
0 0 .. 4,
where A, = A, = ... = 4, = A is a n{nm+d) matrix given by
-1 -1 -1, 0 0 0 0 o0 . 0 O 0,
0 0 0,, -1 -1 -1, 0 0 0 0 0,
{16)
0 o o, 0 O 0,, - -1 -1 -1, O 0,

~15-



As for g it takes the form

g = (Im-1 Iy, . I, 00 -1 .0, I, 5,1 )/ (17)

II‘,;- being the ij-th element of IF. Vector b is as defined in section 2; i.e.

b = [ biy biy.byy, byy..by, . di..dy. b}y by, dy.d] | (18)

To introduce flexibility in the specification and allow the data to depart from the
rank restriction imposed by Johansen's procedure we take (14) to be true on average.

Specifically, we make the restriction stochastic by adding a #°x! random vector v
qg=0b+v (19)

and we model the uncertainty on the fullfilment of the restriction as a mean zero Gaussian

stochastic process
v~ N(O, EV) (20)

where Zv is taken to be proportional to a diagonal matrix with elements equal to the
elements of the main diagonal of the covariance matrix of I. The proportionality factor

" is 75, a component of the hyperparameter vector 7.

We then have two sets of prior information concerning the distribution of 5. On
the one hand, the information given by (19} - (20) which intends to capture the belief that
close relations among the levels of certain veriables may be present. On the other hand,
the information in (4), the type of prior used in the BVAR literature that we can rewrite
as

b-bre (21)
e~ N|(O, Eb)

- 16~



To combine (19), (20) and (21) we use Theil’s mixed estimation technique [see
Theil and Goldberger (1961) and Theil (1963)] and take the resulting estimator and its

variance as the mean and variance of the new normal prior. Specifically, we write

b 1 -e
Bl _ ek ke 22)
q Q v
nixl nixk n¥xl
with
5, 0
kxk kx n?
—e ~
var ( ) = = z (23)
v 0 b B x@n? B
nxk n’ x n?

Theil’s mixed estimator for b is then

b‘:((10’)2"(IQ’>’>“‘(IQ/)Z"[”) (24)
q

and its variance

var(b*) = ((1 Q'YX (1Q ) )!

1 -1 (25)
-(5 o' 5'e)
For an easier interpretation, rewrite (24) as (see Appendix 1)
b*=b+%,Q(Q%, 0 +L) (4-0b) (26)

-17-



which clearly shows that the degree of modification of the prior mean b will depend
upon its degree of compatibility with the information incorporated into (19)-(20). On the
other hand, as can be seen from (25), the prior variance modification will be a function
of the degree of uncertainty associated with the cointegration restrictions; a dimension of
the prior controlled through the hyperparameter 7;. In one extreme, if there is a very high
degree of uncertainty concerning the fullfillment of the restrictions (7; = o), the prior
piece of information (21) is not modified. In the other extreme (75 = 0), it is fully

modified.

—18-



4. A BIVARIATE MONTE CARLO EXPERIMENT

Several methods for estimating long-run equilibrium relationships have been
proposed in the literature. Sims, Stock and Watson (1990) show that consistent estimates
can be obtained from unrestricted VAR models specified in levels, so they suggest
employing the OLS estimation procedure. Further, Park and Phillips (1989) and Ahn and
Reinsel (1990) show that the OLS estimator has the same asymptotic properties as the
maximum likelihood estimator which observes the cointegration restrictions. However,
from a classical standpoint, the most widely used procedure in the estimation of

cointegrated systems is the maximum-likelihood method proposed by Johansen (1988,

1991a).

On the other hand, the two methods outlined in section 2 coexist in the BVAR
literature: the method based on the "standard prior” (where the elements of 7 are set equal
to empirically succesful values) and the one based on the "optimal prior" (where 7 is
chosen so as to maximize the sample likelihood). The latter is more likely to provide a
better approximation to the posterior, which suggests that it should deliver more efficient
results than the former. However, the search for the optimal 7 may get to be a very time-
consuming process, a fact that might sometimes explain the sticking to the "standard
prior". Nevertheless, as we have already argued, neither the "optimal prior" nor the
"standard prior" take explicitly into account the possibility of there being long-run
restrictions among the time series analyzed. This has provided a partial focus for the
macroeconometric debate in the context of unit roots: to some macroeconometricians such
a characteristic of the prior just means that the analysis based on it will almost certainly
be wrong [see the criticisms of Clement and Mizon (1991), Liitkepohl (1991) and Phillips
(1991b)]. To others this characteristic is not determinant because the superconvergence .
property of the unit roots and cointegration aspects of the data means that these aspects
of the model estimates are quite insensitive to the prior [see Sims (1991¢)]. The previous
section tries to bridge positions by suggesting the addition of a dimension to the usual type
of prior aimed at taking explicitly into account possible long-run equilibrium relationships;

we will refer to this modified prior as the "cointegrated prior”.

-19-



The goal of this section is to compare the small sample performance of the
aforementioned five methods (see Chart 1) through a bivariate Monte Carlo experiment,

focussing our attention on BVAR models.

To this end, the following bivariate data generating process (DGP), of the type
used by Banerjee, Dolado, Hendry and Smith (1986) and Engle and Granger (1987), is

considered:

AY,() = aA%,@ + BIV,E-1) - Y,a-D] + n,@®)

AY, (1) = y[Y,¢-1) - Y,(r-1)] + n,(® (27)
m(t) .

- )3
[ﬂg(t)] iid N( 0, " )

Both series are I(1), but there is a linear combination of Y,(t) and Y,(z) given by

the cointegrating vector &=(1 -1)’ that is I(0).

The DGP can also be written in the form of model (10) (as a vector error

correction model)

AYl(t) - (ﬁ+aY -(B +(!Y)) Yl(t‘l) N Sl(t) (28)
AY,() Y % Y,(t-1) &,(0)
where
¢ @) _ (1 a) n,(® (20)
£, 0 1) |n,®

And in the vector autoregressive form

Yl(t) :(1+B+ay —(ﬁ+ay)) Yl(t"l) . el(t) (30
Yz(t) Y 1-y Yz(t_ 1)) 82(0

-20-



It should be noted that in this bivariate DGP no variable is weakly exogeneous with
respect to the cointegrating relation. Therefore, there would be a loss in efficiency if we

used single-equation analysis {see Johansen (1992b) and Dolado (1992)].

In the simulations we have arbitrarily set ¢ = 0.5, § = -0.8and v = 0.8, so the

VAR representation of our DGP is given by

I

Y,(9) = C6 Y,(t-1) + 04 Y,(t-1) + £,

31)

Y, (5 = 08 Y(t-1) + 02 Y,(z-1) + &,()

The specification is completed with a white noise Gaussian assumption for &(1) of the
form
e,

1 ~iidN((O ’ 0.004 0.0004 (32)
&,(0) [\0 0.0004 0.004

With this DGP we have generated 100 series of length 80 and have discarded the
initial 50 values of each. Our results are therefore based on the analysis of 100 small-sized
(30 observations) samples. As we have already mentioned, fine-tuning the priors is a

costly process. This has led us to limit to 100 the number of experiments.
Before proceeding to the discussion of the results, several comments are in order:

(1) For all the methods considered we have fitted a VAR(2) with intercept

term.

(ify ~ When we display results on Johansen’s method we have always imposed the
(valid) restriction that the cointegration rank is one. As the A-maximum and
trace statistics performed rather well, we do not believe that this may have

(strongly) favoured the performance of this procedure’.

Our major concern was not the behaviour of Johansen’s method. Interested readers in the trace and
A-maximum tests as well as short and long-run parameters in cointegrated systems shouid see Eitrheim

-21-



(iif)

(iv)

S

(vi)

The hyperparameter vector which corresponds to our "standard prior”

appears in table 1.

The fine-tuning to obtain the "optimal " and "cointegrated” priors has been
done with the nonstandard hillclimbing routine described in Sims (1986).
We have used an average of 50 function evaluations to obtain
convergence®. In table 1 we present, as descriptive statistics, the mean and

standard deviation of the different hyperparameters across the 100 samples.

We have also examined the behaviour of a "cointegrated prior” in which we
used the theoretical II matrix instead of the ones estimated by Johansen’s
procedure. We did achieve some gains in terms of the likelihood. However,
as the posterior was the same up to three decimal places as when we

estimated the IT matrix, we omit the presentation of these results.

All the Bayesian procedures have been implemented using the multivariate

version of the Kalman Filter.

To gauge estimator performance (see the discussion in Appendix 2) we

consider the root mean square error and the probability of concentration’ defined as

Pr(IB - ﬁisO.l) . Tables 2 to 5 present results on the precision of the different

estimators. We observe the following:

1)

From a classical standpoint, examination of the results referring to

unconstrained OLS and Johansen does not present a clear winner'.

{8

(1992), Gonzalo (1991}, Johansen (1991b) or Reimers (1992).

Sims (1989) indicates that this number allows to "obtain a very rough convergence”. In empirical work
we have often found 50 iterations to be insufficient. Therefore, we believe that this fact may have

disfavoured (slighty) these procedures.

To check the robustness of this measure we have also considered as cut-off value 0.75. The relative
performance among different methods did not change.

However, if we observe tables 6 to 9 in Appendix 2, the OLS estimator of own lag coefficients has
a substantial downward bias in mean and median. Furthermore, is should also be mentioned that the
long-run elasticity (not presented) is far better estimated using Johansen’s procedure (which imposes

99



(i)  The performance of the "standard prior" is very poor. The posterior mean
(see tables 6-7 in Appendix 2) is not far away from the prior mean, so we
end up with (roughly) a bivariate random walk process. Although this prior
is not employed by experienced researchers, its posterior agrees quite
closely with the criticisms directed towards BVAR models {see Clements
and Mizon (1991), Litkepohl (1991) and Phillips (1991c)]. These results
point out the dangers of the mechanical implementation of VAR priors in

which "too many" unit roots are imposed.

(iii)  The performance of the "optimal prior" is satisfactory. If we compare its
mean hyperparameter vector with the one used in the "standard prior”
(table 1), we see that they are very distant. On observing the mean square
error and probability of concentration associated with their respective
posterior we find that the expensive hyperparameter search is worthwhile.
Comparing the statistics obtained with the "optimal prior" to those of
Johansen’s procedure we observe that there is no clear winner!! with
respect to the coefficients of the first lag, and that the coefficients of the
second lag, which are zero in the DGP, are estimated much more precisely
with the “optimal prior" approach'>. We claim, therefore, that the
assertion that BVAR models are severely misspecified for cointegrated
processes has no basis. According to our results, this widespread belief
appears to be right only in the "standard prior" approach; therefore, the

fine-tuning of the prior is strongly recommended.

(iv)  The performance of the "cointegrated prior” is also satisfactory. As can be
seen in Tables 2 to 5, there are practically no differences with the "optimal

prior", which is a reflection of the fact that the hyperparameter value

the number of unit roots in the system) than OLS (which estimates them).

We should probably emphasize that our comparison is based on measures of the "closeness” of
estimates to the true values. If big weight is attached to unbiasedness, Johansen’s estimates should be

preferred.

The long-run elasticity (not presented) is also slightly better estimated with the "optimal prior”.
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associated with the cointegration restriction is very high (its mean is 21.58)
and therefore it only modifies slightly the prior. We think that this similar
performance is explained by Sims (1991c) view that the sample is highly
informative with respect to cointegrating vectors, which are estimated more
sharply and converge more quickly with sample size that other aspects of
the model”. This should be specially true in the context of the specified
DGP, characterized by a matrix of "large" adjustment coefficients and
therefore expected to generate series which are not too frequently away

from the equilibrium relationship.

" The same reason explains the close results obtained when employing the theoretical or estimated I1.
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5. CONCLUSIONS

BVAR models have the strongly desirable characteristic of allowing the analyst to
treat systematically during the specification process the uncertainty about the true nature
of the data generating mechanism. However, the type of prior information generally used
to deal with that uncertainty has led to the unfavorable criticism that the approach may be

unable to capture potential long-run restrictions among the levels of the variables analyzed.

This paper conducts a bivariate Monte Carlo experiment to assess the validity of
the above criticism and to explore a modification to the usual type of prior to explicitly

incorporate long-run restrictions. The experiment provides two remarkable outcomes.

First, the usual type of prior performs well if a hyperparameter search is conducted
(optimal prior), but provides misleading results if the prior is set according to empirical
rules of thumb (standard prior). We interpret this result as a piece of evidence suggesting
that the widespread suspicion about the inability of this type of prior to capture long-run
patterns is not well-grounded, but also implying that fine-tuning the prior is very important
to get a good approximation to the posterior. The result, therefore, provides only partial
support to Sims (1991c) view that in practice the choice of the aspects of the prior
concerning unit roots and cointegrating vectors is not very important because these aspects

of the model converge quickly to their true values.

Second, the good performance of the "optimal prior” implies in turn that adding
long-run restrictions to the prior does not provide improvements in the case analyzed in
this paper. Our intuition, however, is that in set-ups where the series are more frequently
away from the equilibrium relationship, the combination proposed should allow to come

out with a higher quality reduced form model.

Certainly, our conclusions are tentative. Gaining further support for them and

confirming the above intuition requires further exploration of the DGP parametric space.
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APPENDIX 1

ALTERNATIVE EXPRESSION FOR THE MODIFIED PRIOR MEAN

Using Theil’s mixed estimation technique we have seen that the modified prior

mean is
pr=luQHTtuQyltaeHt et [b) (A.1)
q
To obtain the expression (26) in the text we use the following identities:

(A+BDB" )™ = A - A"V BER'A™' + A”! BE(E+D)"' EBA"! (4.2)

M+B =A@+ BYHY!IB! (4.3)

1t

B(B'A™'B «+ D')'B" = BEB' + BE(E + D)'EB (4.4)

where E = (B A'B).
Inverting the block diagonal matrix in (4.]) and rearranging gives
b= (5o e ) (5 b+ 0 Tq) (4.5

Considering then (4.2)

b* = b+ L,Q (QL,Q7'0b +
4 er (szor)‘l (QZbQ + E;l )’1 (QEbQI)—l Q/B. +
(4.6)
+ L,0L'g - 5,0 (QE,Q)'QL,Q g +

£ 5,0 Q5,0 ) @50 + £ )" (05,07)! QERT
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And using (4.3) and (A.4) we have
b -b+%,Q(QRL,Q +X ) (¢g-Qb) (4.7)

which is the expression sought.
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APPENDIX 2

OTHER MEASURES OF PERFORMANCE

In section 4 we have presented results on the root mean square error and the
probability of concentration around the true values of the coefficients of the estimated
models. This appendix includes information on two measures of location (mean and

median) as well as two measures of dispersion (standard deviation and interquartile range).

We do believe that unbiased estimators are highly desirable when there exists the
possibility of carrying out controlled experiments: as more samples are collected, the
average value of sample estimates tends toward the value of unknown parameters.
However, economists are seldom able to perform controlled experiments. Thus, we prefer
estimators that miss the mark on average (i.e. they are biased) if this brings gains in terms
of reduced variance. This explains our choice of measures of "closeness" to gauge
estimator performance. Nevertheless, for those interested, performance in terms of mean

values is presented in Tables 6 and 7.
Measures in terms of medians and interquartile ranges are useful because they are

quite robust to the existence of outliers. We present them in Tables 8-9 and 10-11.

Finally, Tables 12 and 13 contain the results in terms of standard deviations.
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HYPERPARAMETER VALUES

Table 1
Standard prior Optimal prior Cointegrated prior

7o 1.0000 0.4672 0.4611
(0.1184) (0.1212)
7, 0.2000 0.3050 0.2876
(0,2034) (0.1380)
I 0.5000 0.8921 1.0359
(0.3414) (0.3158)
75 1.0000 2.3160 2.8989
(1.1224) (0.8572)
r 1.0000 8.9731 10.1494
(10.7429) (5.7320)
e B 21.5849
(6.6580)

Note: Mean values across 100 samples. For optimal and cointegrated priors,

standard deviations in parenthesis.
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ESTIMATED COEFFICIENTS: ROOT MEAN SQUARE ERROR
DEPENDENT VARIABLE: Y,

b, bl bl, bl constant

OLS 0.2186 0.2399 0.1840 0.1582 0.1416
Johansen 0.1885 0.2348 0.1977 0.1585 0.0461
Standard prior 0.3963 0.0007 0.2460 0.1788 0.0000
Optimal prior 0.1774 0.0003 0.1121 G.1052 0.0000
Cointegrated prior 0.1838 0.0002 0.1145 0.0947 0.0000

Sample size: 30 observations

ESTIMATED COEFFICIENTS: ROOT MEAN SQUARE ERROR
DEPENDENT VARIABLE: Y,

b, b, b3, b3, constant

OLS 0.2349 0.2289 0.2053 0.2044 0.0985
Johansen 0.2363 0.2360 0.2006 0.2032 0.0643
Standard prior 0.3094 0.5061 0.7929 0.0010 0.0000
Optimal prior 0.2506 0.1601 0.2913 0.0004 0.0000
Cointegrated prior 0.2421 0.1488 0.2868 0.0002 0.0000

Sample size: 30 observations
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ESTIMATED COEFFICIENTS: PROBABILITY OF CONCENTRATION
DEPENDENT VARIABLE: Y,

Table 4
bl bi, bi, bl, constant
OLS 0.3700 0.3100 0.4400 0.6000 0.5500
Johansen 0.4600 0.3700 0.4000 0.4900 0.9500
Standard prior 0.0000 1.0000 0.0200 0.1500 1.0000
Optimal prior 0.3200 1.0000 0.6800 0.6800 1.0000
Cointegrated prior 0.2800 1.0000 0.6400 0.7400 1.0000
Sample size: 30 observations
ESTIMATED COEFFICIENTS: PROBABILITY OF CONCENTRATION
DEPENDENT VARIABLE: Y,
Table 5
b, b, b, b, constant
OLS 0.2600 0.3400 0.4700 0.3800 0.7200
Johansen 0.3300 0.2900 0.4700 0.3800 0.5000
Standard prior 0.0100 0.0000 0.0000 1.0000 1.0000
Optimal prior 0.2800 0.5700 0.0600 1,0000 1.0000
Cointegrated prior 0.2600 0.5900 0.0800 1.0000 1.0000

Sample size: 30 observations
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ESTIMATED COEFFICIENTS: MEAN VALUE
DEPENDENT VARIABLE: Y,

bl b}, b, bl constant

OLS 0.5035 -0.0880 0.3947 -0.0228 0.1062
Johansen 0.5730 -0.0410 0.4300 0.0131 0.0125
Standard prior 0.9963 -0.0006 0.1643 -0.1643 0.0000
Optimal prior 0.4679 0.0000 0.4154 0.0663 0.0000
Cointegrated prior 0.4618 0.0001 0.4286 0.0540 0.0000
Theoretical value 0.6000 0.0000 0.4000 0.0000 0.0000

Sample size: 30 observations

ESTIMATED COEFFICIENTS: MEAN VALUE
DEPENDENT VARIABLE: Y,

b}, b%, b, b, constant

OLS 0.7890 0.0584 0.1281 -0.0996 0.0618
Johansen 0.8284 0.0815 0.1599 -0.0710 0.0010
Standard prior 0.5051 -0.4972 0.9929 -0.0007 0.0000
Optimal prior 0.6045 -0.8075 0.4661 -0.0001 0.0000
Cointegrated prior 0.6050 -0.0829 0.4600 -0.0001 0.0600
Theoretical value 0.8000 0.0000 0.2000 0.0000 0.0000

Sample size: 30 observations
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ESTIMATED COEFFICIENTS: MEDIAN VALUE
DEPENDENT VARIABLE: Y,

b, bi, b} bl constant

OLS 0.5036 -0.0997 0.3935 -0.0443 0.0921
Johansen 0.5748 -0.0514 0.4193 -0.0018 0.0054
Standard prior 0.9964 -0.0006 0.1601 -0.1634 0.0000
Optimal prior 0.4589 0.0000 0.4149 -0.0525 0.0000
Cointegrated prior 0.4601 0.0000 0.4361 -0.0446 0.0000
Theoretical value 0.6000 0.0000 0.4000 0.0000 0.0000

Sample size: 30 observations

ESTIMATED COEFFICIENTS: MEDIAN VALUE
DEPENDENT VARIABLE: Y,

b?, b?, b2, b3, constant

OLS 0.7624 0.0631 0.1360 -0.1028 0.0446
Johansen 0.8166 0.0773 0.1806 -0.0546 -0.0053
Standard prior 0.4956 -0.4930 0.9931 -0.0008 0.0000
Optimal prior 0.5984 0.0667 0.4581 0.0000 0.0000
Cointegrated prior 0.6111 -0.0629 0.4583 0.0000 0.0000
Theoretical value 0.8000 0.0000 0.2000 0.0000 0.0000

Sample size: 30 observations
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ESTIMATED COEFFICIENTS: INTERQUARTILE RANGE
DEPENDENT VARIABLE: Y,

Table 10
b, bl, b3, bl constant
OLS 0.2434 0.2660 0.2376 0.1757 0.1029
Johansen 0.2524 0.3013 0.2361 0.2035 0.0370
Standard prior 0.0011 0.0004 0.0821 0.0849 0.0000
Optimal prior 0.1351 0.0001 0.1467 0.0920 0.0000
Cointegrated prior 0.1439 0.0001 0.1227 0.0732 0.0000
Sample size: 30 observations
ESTIMATED COEFFICIENTS: INTERQUARTILE RANGE
DEPENDENT VARIABLE: Y,
Table 11
b3, b}, b3, b3, constant
OLS 0.3190 0.2764 0.2595 0.2359 0.1041
Johansen 0.3230 0.3125 0.2489 0.2526 0.0847
Standard prior 0.1081 0.1102 0.0013 0.0008 0.0000
Optimal prior 0.2342 0.1809 0.1354 0.0001 0.0000
Cointegrated prior 0.2188 0.1652 0.1464 0.0001 0.0000

Sample size: 30 observations

36—



ESTIMATED COEFFICIENTS: STANDARD DEVIATION
DEPENDENT VARIABLE: Y,

Table 12
b, bi, by, bl constant
OLS 0.1972 0.2243 0.1848 0.1574 0.0941
Johansen 0.1875 0.2324 0.1964 0.1587 0.0446
Standard prior 0.0009 0.0003 0.0708 0.0708 0.0000
Optimal prior 0.1190 0.0003 0.1116 0.0820 0.0000
Cointegrated prior 0.1218 0.0002 0.1114 0.0782 0.0000

Sample size: 30 observations
ESTIMATED COEFFICIENTS: STANDARD DEVIATION
DEPENDENT VARIABLE: Y,

Table 13
bi, b, b2, b3, constant
OLS 0.2359 0.2225 0.1932 0.1794 0.0772
Johansen 0.2358 0.2226 0.1975 0.1913 0.0647
Standard prior 0.0940 0.0949 0.0012 0.0006 0.0000
Optimal prior 0.1575 0.1348 0.1191 0.0004 0.0000
Cointegrated prior 0.1443 0.1242 0.1217 0.0002 0.0000

Sample size: 30 observations

-37-



REFERENCES

AHN, S.K. and REINSEL, G.C. (1990): "Estimation for partially nonstationary
multivariate autoregressive models". Journal of the American Statistical
Association, 85, 813-823.

BALLABRIGA, F. (1988): "Transmission mechanisms in an open economy: Spain 1969-
1984". Ph.D.Thesis. University of Minnesota.

BANERIJEE, A., DOLADO, J.J., HENDRY, D.F. and SMITH G.W. (1986): "Exploring
equilibrium relationships in econometrics through static models: some Monte Carlo
evidence". Oxford Bulletin of Economics and Statistics, 48, 253-277.

BANERJEE, A., DOLADO, J. GALBRAITH, J.W. AND HENDRY, D.F. (1993):
"Cointegration, error-correction, and the econometric analysis of non-stationary
data”. Oxford University Press. Oxford.

BOX, G.E.P. and TIAO, G.C. (1977): "A canonical analysis of multiple time series".
Biometrika, 64, 355-365.

CAMPBELL, J.Y. and PERRON, P. (1991): "Pitfalls and opportunities: what
macroeconomists should know about unit roots”. Blanchard, O.J. and Fischer, S.
(eds). NBER Macroeconomics Annual. The MIT Press, Cambridge, Massachusetts,
141-201

CANOVA, F. (1988): "Essays in seasonality in time-series”. Ph.D.thesis. University of
Minnesora.

CANOVA, F. (1992): "An alternative approach to modeling and forecasting seasonal time
series". Journal of Business and Economic Statistics, 10, 97-108.

CANOVA, F. (1993): "Modelling and forecasting exchange rates with a Bayesian time-
varying coefficient model". Journal of Economic Dynamics and Control, 17, 233-
261.

CLEMENTS, M.P. and MIZON, G.E: (1991): "Empirical analysis of macroeconomic time
series”: VAR and structural models. European Economic Review, 35, 887-917.

CHRISTIANO, L. and EICHENBAUM, M. (1990): "Unit roots in real GNP: Do we
know and do we care?". Carnegie-Rochester Conference Series on Public Policy,

32, 7-61.

38—



DOAN, T. LITTERMAN, R.F. and SIMS, C. (1984): "Forecasting and conditional
projections using realistic prior distributions". Econometric Reviews, 3, 1-100.

DOLADO, J.J. (1992): "A note on weak exogeneity in VAR cointegrated models".
Economics Letters. 38, 139-143.

EITRHEIM, O. (1992): "Inference in small cointegrated systems: some Monte Carlo
results”. Discussion Paper 92-31. University of California, San Diego.

ENGLE, R.F. and GRANGER, C.W.J. (1987): "Cointegration and error correction:
representation, estimation and testing". Econometrica, 55, 251-76.

GONZALO, J. (1991): "Estimation of long run equilibrium relationships and common long
memory components in cointegrated systems'. Ph.D.thesis. University of
California, San Diego.

GRANGER, C.W.J. (1981): "Some properties of time series data and their use in
econometric model specification”. Journal of Econometrics, 16, 121-130.

GRANGER, C.W.J. and WEISS A.A. (1983): "Time series analysis of error correction
models". Studies in Econometrics, Time Series and Multivariate Statistics. Karlin,
S., Amemiya, T. and Goddman, L.A. (eds). New York, Academic Press, 255-278.

JOHANSEN, S. (1988): "Statistical analysis of cointegration vectors". Journal of
Economics Dynamics and Control, 12, 231-254.

JOHANSEN, S. (1991a): "Estimation and hypotesis testing of cointegration vectors in
Gaussian vector autoregressive models". Econometrica, 59, 1551-1580.

JOHANSEN, S. (1991b): "The power function of the likelihood ratio test for
cointegration". Econometric Decision Models: New Methods of Modeling and
Applications. Gruber J. (ed) Springer Verlag, 323-335.

JOHANSEN, 8. (1992a): "An I(2) cointegration analysis of the purchasing power parity
between Australia and the United States". Hargreaves, C. (ed.). Macroeconomic
modelling of the long run. Edward Elgar, Aldershot, 229-248.

JOHANSEN, S. (1992b): "Cointegration in partial systems and the efficiency of single-
equation analysis". Journal of Econometrics, 52, 389-402.

JOHANSEN, S. and JUSELIUS, K. (1992): "Testing structural hypotheses in a
multivariate cointegration analysis of the PPP and the UIP for UK". Journal of

Econometrics, 53, 211-44.

-39~



JUSELIUS, K. (1992): "On the duality between long-run refations and common trends in
the I(1) versus I(2Z) models. An application to aggregate money holdings".
Forthcoming in Econometric Reviews.

LITTERMAN, R. (1980): "Techniques for forecasting with vector autoregressions”.
Ph.D.thesis. University of Minnesora.

LITTERMAN., R. (1984): "Specifying vector autoregressions for macroeconomic
forecasting”. Federal Reserve of Minneapolis. Staff Report 92.

LITTERMAN, R. (1986): "Forecasting with Bayesian vector autoregressions - five years
of experience”. Journal of Business and Economic Statistics 4, 25-38.

LOTKEPOHL. H. (1991): Introduction to Multiple Time Series Analysis. Springer Verlag.
New York.

PARK, I.Y. and PHILLIPS. P.C.B. {1989} "Statistical inference in regressions with
integrated processes: Part 2". EFconomerric Theorv. 5. 95-131.

PENA, D. and BOX. G.E.P. (1987): "Identifying a simplifying structure in time series”.
Journal of the American Statistical Assoctation, 82, 836-843.

PHILLIPS, P.C.B (1991a): "To criticize the crifics: an objective Bayesian analysis of
stochastic trends”. Journal of Applied Econometrics. 6, 333-334.

PHILLIPS, P.C.B. (1991b}: "Bayesian routes and unit roots: de rebus prioribus semper
est disputandum”. Jowurnal of Applied Econometrics. 6, 435-473.

PHILLIPS, P.C.B. (1991c): "Optimal inference in cointegrated systems”. Econometrica,
59, 283-306.

QUAH, D. (1992): "The relative importance of permanent and transitory components:
identification and some theoretical bounds”. Econometrica, 60, 107-118.

RAYNAULD, J. and SIMONATO, J1.C. (1993): "Seasonat BVAR models". Journal of
Econometrics, 55, 203-229.

REIMERS, H.E. 11992): "Comparisons of tests for multivariate cointegration”. Staristical
Papers, 33. 335-359.

REINSEL, G.C. and AHN, S K. (1992) "Vector autoregressive models with unit roots
and reduced rank structure: Estimatior, likelihood rano rest and forecasting”

Journal of Time Series Analvsis, }3 55375

SIMS. C. (1986 “Bavesmth: 4 progrem Tor multivanate Bavesian nterpolation”

Discussion Papar n® 234 Cenrer ¢ Eronomnis Re Uriersiy of Minnesota.



SIMS,

SIMS,

SIMS,
SIMS.

SIMS,

SIMS,

SIMS,

C. (1988): "Bayesian skepticism on unit root econometrics”. Jowrnal of Economic
Dvnamics and Conirol, 12, 463-474.

C. (1989): "A nine variable probabilistic model of the US economy”. Institute for
Empirical Macroeconomics. Federal Reserve of Minneapolis. Discussion Paper. 14,
C. (1991a): "VAR macrocconometrics: an update”. Yale University. Manuscript.
C. (1991b): Comment on "To criticize the critics” by Peter C.B. Phillips. Journal
of Appiied Econometrics. 6, 423-34

C. (1991c): Comment on "Empirical analysis of macroeconomic time series: VAR
and structural models” by Michael P. Clements and Grayham E. Mizon. European
Economic Review, 35. 922-932.

C., STOCK. J. and WATSON, M. (1990): "Inference in linear time series models
with some unit roots”. Economerrica. 58, 113-144.

C. and UHLIG, H. (1991): "Understanding unit rooters: a helicopter tour".

Economerrica, 59, 1591-1596.

THEIL, H. (1963): "On the use of incomplete prior information in regression analysis”.

Journal of the American Statistical Associazion, 58, 401-414.

THEIL, H. and GOLDBERGER. A S. (1961): "On pure and mixed statistical estimation

in economics”. [nrernatiomal Economie Review, 2, 65-78,

VELU. R P.. WICHERN, D W_and REINSEL. G.C. {1986}: "Reduced rank models for

multiple time series”. Biometrika. 73, 105-111.

- 41~








