Papers ESADE num. 155,
septiembre, 1997

BAYESIAN VECTOR
AUTOREGRESSIONS

Fernando C. Ballabriga



Deposito Legal: B-4.761-1992
ISSN: 1132-7278



5.

Introduction
An Heuristic Description of the BVAR Methodology

2.1. VAR models as a general frame of reference
2.2. The spirit of the BVAR methodology
2.3. Specification of a BVAR model

2.4. The BVAR methodology: advantages and
drawbacks

A Formal Description of the Methodology
3.1. The framework

3.2. Time-variation

3.3. The prior information

Application: A Small Macroeconometric Model
for the Spanish Economy

4.1. Goodness of Fit
4.2. Projections

Concluding Remark -

References

Appendix: Data

Tables

Figures

11
13

16
16
18
20
21
23
24
30



Abstract

This paper containts both an heuristic and a formal description of
the Bayesian Vector Autoregression methodology, a development
within the Vector Autoregression literature that provides a solution
to the problem of degrees of freedom inherent in empirical
macroeconomics, refraining from the use of exclusion restrictions.
The paper also presents an application of the methodology to the
Spanish macroeconomy, exploring some probability aspects of the
future path of the economy.
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1.

Introduction

Vector Autoregressions (VAR) were introduced by C. A. Sims in two
seminal papers. In Sims (1972) a VAR model was used to analyze
the long standing issue of the existence of causality between
aggregate money and income. In Sims (1980) VAR models were
explicitly proposed as an alternative to standard simultaneous
equations macroeconometric models, with the basic argument that
these models were specified and identified using incredible economic
restrictions. A reasonable alternative, Sims argued, should refrain
from using controversial economic restrictions, relying on the data as
the most important source of information to identify key
macroeconomic interactions. In these terms, VAR models appeared

as suitable altemnatives.

Soon, the proposal found obstacles that have been the source of
discussion and research in the VAR literature during the 80°s and the
90°s. The first was the issue of identification: as raw VAR models are
reduced forms they do not go beyond correlations and so cannot be
used for macroeconomic analysis. The second obstacle was actually
a paradox: in the spirit of the VAR methodology is to avoid a priori
exclusions, but because of its generous parameterization nature this
means that VAR models are not actually operational alternatives to
standard macroeconometric models, as the degrees of freedom are
usually too few if the analyst includes more than a relatively reduced
number of variables in the model. It is uncommon, in fact, to find
VAR models including more than five or six variables.

Both of these problems have been reasonably well solved; to the
extend that nowadays it is probably widely accepted that VAR
methods are among the most successful innovations in empirical
macroeconomics of the last two decades.

In particular, the search for a solution to the degrees of freedom
paradox gave rise to the Bayesian dimension of the VAR
methodology: the so called Bayesian Vector Autoregression (BVAR)
models. These models are the focus of this article, which has three
core sections. Section 2 provides a detailed intuitive description of
the BVAR methodology. Section 3 gives the formal description.
Section 4 fits a BVAR model to a set of Spanish macroeconomic
indicators and explores some aspects concerning the evolution of
inflation which may be relevant in the context of Maastricht

convergence criteria.



2.

An Heuristic Description of the BVAR Methodology

2.1. VAR models as a general frame of reference

As Todd (1984) points out, it is useful to think of the construction of
an econometric model as a process that combines, in accordance
with certain criteria, the historical information contained in the sample
data with a priori statistical and economic information provided by the
econometrician. The different modelling techniques can then be
compared in terms of the type of a priori information used and the

weight attributed to it.

All modeliing techniques naturally require a minimum of prior
information in order to be operational. At the very least they need the
information for selecting a group of variables which are relevant for
the purposes of the analysis and for establishing a type of algebraic
relation among them. In fact, the selection of a vector Y of n
components, together with the assumption that each of these
components linearly depends on its own past, the past of the
remaining components and a vector Z with d variables of a
deterministic character (for example, a constant term or seasonal
dummy variables) leads to a model which in recent years has
become part of the tool kit commonly used by empirical economists:

Yi=B Y 1+B, Yo+ ... + By Yim+ DZi + & (1M

where t is a time index, B; represents n x n matrices, Disnxdand ¢
is an n-dimensional vector of random disturbances. Because model
(1) relates a vector of variables with its own past it is called a VAR, or
Vector Autoregression, model. Furthermore, because a minimum of a
priori restrictions are involved, the model is also referred to as UVAR
(Unrestricted Vector Autoregression).

As a theoretical framework, the UVAR model is very general.
Granger and Newbold (1986) indicate that if the number of lags is not
restricted and the coefficient matrices are allowed to be
time-dependent, the UVAR model can be used to represent any
stochastic process. This generality makes the UVAR model an
attractive starting point for econometric modelling and a frame of
reference that reveals the type of restrictions actually incorporated in
alternative models, inasmuch any simultaneous equations or time
series econometric model can be nested in the representation

of type (1).

2.2. The spirit of the BVAR methodology

The generality of the UVAR representation is theoretically attractive
but, in practice, its generous parameterization is the source of its



principal weakness. Indeed, the number of coefficients to be
estimated in a model such as (1) is n(nm+d), a number which
increases exponentially as the dimension of the Y vector increases
and proportionately with the number of lags included. So, for
example, a model with five endogenous variables, four lags per
variable and a constant term for each equation will contain a total of
105 coefficients to be estimated.

This is a serious problem in terms of empirical economic research,
which is characterized by the existence of sample information which
tends to be at once sparse and highly contaminated by random
variability. In fact, it means that econometricians cannot estimate
UVAR models that include more than a relatively reduced number of
variables without running a serious risk of overfitting, i.e. without
running the risk that their estimates will be overly influenced by noise
as opposed to signal. Overfitting is most likely to occur when three
circumstances coincide in empirical analysis: there are a large
number of parameters to be estimated; sample information is
relatively sparse, and the method of estimation is designed to explain
(fit) the sample data as closely as possible (for example, the least
squares method). These three circumstances certainly coincide in
UVAR models when the objectives of the analysis require that the
number of variables to be included is relatively high, as is usually the
case, for example, when the aim is to model the macroeconomic
environment of an economy. Generally speaking, UVAR models are
not recommendable in this type of context.

The BVAR methodology was originally developed by Litterman
(1980) and Doan, Litterman and Sims (1984) in an attempt to find an
alternative to the usual solution to the problem of overfitting in UVAR
models. This solution involves strict adherence to economic theory
as a source of exclusion restrictions and is used in simultaneous
equation structural models. In other words, the authors attempted to
find a way of avoiding the influence of noise on estimates without
being forced to confront the include/exclude dichotomy with the lags
of the different variables, a procedure that normally does not allow
the analyst to realistically express the available a priori information
because it is not absolutely certain that the value of any coefficient is
zero nor is the analyst absolutely ignorant of the value of the
coefficients included in the model.

When looking at it from this angle, adopting a Bayesian perspective
would appear to be the natural solution to the problem. That is, we
could start out with a probability distribution for the model's
coefficients. Without placing all the weight on a single value and
without being absolutely devoid of information, this distribution would
give a reasonable range of uncertainty and could therefore be
altered by sample information if both sources of information were
substantially different. So long as the a priori information was not too
loose (uninformative) it would be altered only by the signal and not
by noise, reducing the risk of overfitting.

Putting this idea into practice involves combining model (1) with an a
priori probability distribution for its coefficients. This combination



results in what is known as a Bayesian Vector Autoregression
(BVAR) model.

2.3. Specification of a BVAR model

Without a doubt, with BVAR models the distinctive and most
important characteristic of the specification process is the choice of
the prior information. This information can, of course, have many
sources and many different forms. The information described in this
section was conceived as part of an empirical analysis of
macroeconomic data and is known as "the Minnesota prior" because
it was first used by econometricians at the Federal Reserve Bank in
Minneapolis. The prior information used in more recent applications
tends to be more elaborate, though its objective and its basic traits

remain the same.

As mentioned in Section 2.2 the purpose of the a priori information is
to help reduce the risk of overfitting. And this is the first aspect that
must be stressed: this information is purely instrumental and as such
does not pretend to be necessarily true on average. It does,
however, aim to contain a realistic range of possible data-generating
mechanisms, from which the analyst can select the most appropriate
for explaining the variability of sample data.

The second noteworthy characteristic of the a priori information
included in the BVAR model specification process is its
empirical-statistical origin and its consequent lack of economic
content. The information used includes three empirical regularities
resulting from statistical time series analysis:

1) The hypothesis that the best forecast of the future value of a
series is its current value (the random walk theory) is a good
approximation to the behavior of numerous economic series.

2) The most recent lagged values of a particular variable usually
contain more information about the variable's current value than

do earlier lagged values.

3) The lagged values of a particular variable usually contain more
information about the current value of a variable than do the
lagged values of other variables.

The easiest way to formulate regularities 1-3 above is by defining
independent normal distributions for each and every one of the
coefficients of model (1). Aiming for an individualized specification of
each and every one of the distributions would, however, cause
overfitting, which is exactly what we are trying to avoid. Therefore a
way to make the idea operational is to introduce a functional
dependency among all the distributions and a reduced set of
parameters (hyperparameters in the BVAR jargon) which make it
possible to control their basic dimensions in line with regularities 1-3.



Figure 1 illustrates the density of the prior distribution we are describing
here as applied to the coefficients of a representative equation of system
(1) and shows how empirical regularities 1-3 above are introduced:

1) is represented by specifying a mean equal to one for the distribution
of the first own lag coefficient and a mean equal to zero for the
distribution of the remaining coefficients.

2) is represented by reducing the variance of the distribution of the
coefficients as the lag increases. Thus, the more distant the lag the
greater the certainty that its coefficient is zero.

The introduction of 3) can be observed by noting that the first own lag
coefficients (row 1) have a greater variance than the lags of other
variables (row 2), which makes it more certain that the value of these

latter is zero.

This representation also gives an idea of the nature of the reduced set of
controlling hyperparameters. Thus, one hyperparameter usually controls
the value of the mean of the distribution of the first own lag coefficient; a
second controls the variance of the distribution of the own lags; and a
third controls the variance of the distribution of the lags of other
variables. In order to avoid specifying different hyperparameters to
control the variance of each lag, one usually selects a functional form by
which the variance is inversely related to the size of the lag, introducing
a fourth hyperparameter in order to control the speed at which the
variance shrinks as the lag increases. It's nomally assumed, on the
other hand, that the analyst does not have any specific knowledge about
the deterministic component of the model and, accordingly, an
uninformative prior is used for that component (row 3 of Figure 1).

An additional hyperparameter is usually specified in order to control
the degree of global uncertainty of all the coefficients. This is crucial
in determining the weight to be attributed to the sample information
when estimating the model. In terms of Figure 1, an increase in this
last hyperparameter will cause a general increase in the variance of
all the distributions. This means that the weight of prior information to
sample information is reduced.

Certainly, in specific applications one might wish to control other
dimensions of the prior distribution which are considered relevant for
the analysis (e.g. seasonal or long-run dimensions), but the
dimensions just described are common to all applications of the

methodology.

The utter lack of economic content in the prior information used in
BVAR analysis may seem surprising. This becomes more
understandable when one recalls the instrumental nature of this
information. Although instrumentality and economic content are not
incompatible, the instrumental nature of the information is purer if it is
not contaminated by dubious economic assumptions. It therefore
seems advisable to opt for a priori economic neutrality so that a
single specification can be accepted by economists whose visions of
the true structure of the economy may differ greatly.

The specification of a BVAR model is completed by combining the



prior information with the sample information. This is done by
applying the Bayesian rule for computing the posterior distribution of
the model's coefficients. The mean and the variance of this posterior
distribution provide the point estimates and the variances of the

different coefficients of (1), respectively.

2.4. The BVAR methodology: advantages and drawbacks

The main ideas described thus far in this section can be summed up
by saying that the BVAR methodology is an option that makes the
process of specifying econometric models more flexible and
objective. This is most likely the principal virtue of the methodology.

BVAR models are in fact flexible enough to include a variety of
information that realistically and systematically expresses the
uncertainty that exists with respect to the relevant interactions in the
economy under analysis. One intuitively assumes that a flexible and
systematic method of imposing restrictions will lead to a more
accurate extraction of the empirical regularities that underlie the
variability of the sample. Should this be the case, the estimates
obtained will be more accurate, although they could be biased, than
the estimates obtained when applying the least square method, and
consequently the final estimated model would in principle be of better
quality. And all obtained by means of an objective process which
uses explicit statistical mechanisms that can be perfectly reproduced
and are able to characterize the probable future evolution of the

modelled variables.

The available evidence! actually confirms that BVAR models
successfully compete as forecasting tools. However, in contrast with
most models built along the lines of the Box and Jenkins tradition,
they do it from a multivariate perspective. This is an important aspect
that must be emphasized. It means that BVAR applications have a
primary interest in extracting stable interactions among the variables
analyzed, a necessary condition to attempt economic interpretation.
In fact, a BVAR model may aim to go beyond the "black box" stage
by attaching an economic interpretation to a set of stable interactions
and thus be of some use in, for example, projecting the potential
impact of certain economic policy measures. In such applications the
models aim to compete with multivariate methods of a structural
nature. We can therefore view BVAR methods as a bridge between
pure forecasting time series models and simultaneous equations

interpretable models.

The question that immediately comes to mind is: where do you get a
possible economic interpretation when the model has been
described as utterly lacking in economic content? And the reply is
that, if you want to extract an economic interpretation of the analysis,
the BVAR model must in fact be complemented by an additional set

1 Among the most noted works are Litterman (1986), McNess (1986), Runkle (1990) and Artis and Zhang (1990).
Moreover, Canova (1995) includes a quite exhaustive review of the literature on the forecasting accuracy of VAR

methods.




of economic restrictions. This brings us to the point where the model
is identified, a point which, in VAR methodology in general and
BVAR methodology in particular, occurs after the model is specified
and involves applying a minimum set of economic restrictions which
intends to be as uncontroversial as possible2.

Leaving the identification of the model until last enables us to clearly
separate the restrictions used when specifying the probabilistic
mechanism of the model from those aimed at giving it economic
content. However, the fact that identification is based on a minimum
set of restrictions means that the economic interpretation is much
less clear than the interpretation of an empirical model derived from a
set of explicit theoretical hypotheses. This lack of clear interpretation
is probably the biggest drawback to the VAR (UVAR or BVAR)
methodology; it is the opportunity cost of a model that is closer to the
stable regularities of the sample data.

Since it is not a BVAR-specific issue we will not deal with the identification problem in this article. Pioneer work in
the literature on identification in VAR analysis can be found in Bernanke (1986), Blanchard and Watson (1986),
Sims (1986) and Blanchard and Quah (1989). In the bayesian framework, Ballabriga, Sebastian and Vallés (1995)
and Leeper, Sims and Zha (1996) estimate identified BVAR models.



3. A Formal Description of the Methodology

3.1. The framework

For exposition purposes we find convenient to use the conventional
notation in regression analysis. Thus, we write model (1) as follows

Yt =Xt—1B+ €, )
nx1 nx1
where
Xpoy O .. O
X - 0 Xpq w. O
t-1
n x nk
o o Xpee
(Y-
Yt—z
X = i=1,....n
it=1
kx1 .
Yt-—mJ
\Zt
B1)
B2
B ]
nk x 1
\B,,)




Each 0-block in X . is a k-dimensional vector of zeros, k = nm + d,
with n being the number of endogenous variables, m the number of
lags, and d the number of deterministic variables. The subvectors B;,
i=1, .. n, are also k x 1 and contain stacked the ith rows of the
coefficient matrices B,, / = 1, ..., m, and D. The " ' " sign here and
throughout indicates transposition.

From a Bayesian perspective B is a random vector. Therefore, a
complete description of the stochastic behavior of Y, conditional on
X, . requires explicit assumptions about p and ¢, . The following will

be assumed for every t

B I Xi-1~N( _Bt-1 ) Qm)
g | Xi.4 ~N(0,Z) (2a)

B and g independent

As it will be seen in what follows, the set of assumptions (2a) will
allow us to exploit the convenient gaussian framework to come out
with a flexible formal model for incorporating prior information into the

analysis.

To be more concrete, let us start by noting that under a Bayesian
perspective the problem of specifying our econometric model boils
down to the problem of obtaining a posterior distribution B | X;_4, Y;
from a prior distribution B | X;., . We will first focus on the process of
obtaining the posterior distribution, leaving for latter discussion the
choice of the prior information?3.

A convenient two-steps strategy to obtain the posterior distribution is
to characterize first the joint distribution of Y, and B and proceed then
to condition on Y, . Specifically, from (2) and the last two
assumptions in set (2a) we can write

Ytlxt-1rl3~N(Xt-1B:Z) (3

On the other hand, according to standard probability rules the joint
density of B and Y, conditional on X;_, is given by the product of the
densities in (3) and in the first line of set (2a). This joint density tumns
out to be multivariate normal. To see this, observe that for any real
vector ¢, ¢ e IR"™™, we can write*

From a strict bayesian standpoint £ should be also part of the specification problem; i.e. the problem should be to
obtain a posterior B, £ | X..1, Y from a prior B, £ | X., . For the most part, however, the bayesian VAR literature
has proceeded conditioning on I and focusing the attention on the coefficient vector . We will stick to this
framework.

The argument applies the following characterization of the multivariate normal distribution: a p-dimensional
random vector V is multivariate normal if and only if ¢'V is normal for any ¢ e IR".
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Y,
c’(ﬁ‘)=c,'Yt+c§B

=Ci(X,_1B+€)+cC5 B 4)

=(c1 X,_1+C3) B+ g,

where (2) and the appropriate partition of cin ¢, , n x 1, and ¢, ,
nk x 1, have been used. The set of assumptions (2a) guarantees
that, conditioning on X;_, , (4) is a linear combination of independent
normals, and therefore normal; which in turn proves the joint -
normality of Y, and B. The characterization of their density function is
straightforward from (2) and the first assumption in (2a). Specifically,

we have

Y, —
“Ix_.|- N((xtjﬁmj (x,-ﬁm Xia+2 Xt-@MD -
B ‘ Be-1 Qg Xi- Qe

From (5) we can then obtain the posterior distribution for B using the
well-known properties of the multivariate normal to condition on Y, . We

specifically get that

lef-“!»,t“N(B(er) (6)
where

B = Bt-'l +Q, 4 XA MY, - X4 '3:—1)
Q, =Qt—1 —Q_q Xio4 MX, 18, 4

M= (X, 1 Q1 Xioq+2)7"

Thus, starting from a set of sample observations Y, , t=1, ..., T, a
prior information for B expressed in the form of a normal density for
B | X, and interpreted as conditional on presample information, and
a covariance matrix Z, we can effectively use the updating scheme
specified in (6) to come out with a posterior distribution for B | X;
whose mean and variance provide, respectively, the point estimates
and the standard errors of the coefficients of our model.



3.2. Time-variation

1

The analysis has proceeded so far under the assumption that the
coefficient vector B has a time-invariant distribution which each new
sample observation helps to estimate with a higher precision. But
quite often the analyst may believe that the sample contains
structural shifts. This belief can be incorporated into the prior
information set by allowing a time-varying distribution for .

The prior possibility for time-variation is a standard feature of BVAR
models which increases the flexibility of the specification process and
also provides a convenient mechanism to account for potential
in-sample structural shifts without having to model explicitly the
source of the shift (e.g. a policy regime change).

The most common implementation of time-variation specifies a first
order autoregressive law of motion for B. This law of motion seems a
priori sufficient to capture possible linear shifts of . At the same time
it keeps the analysis within the convenient gaussian framework. In
fact, the framework described in 3.1 can be extended quite easily to
accomodate this type of time-variation. Specifically, model (2) will

now read

Yi=Xeq B+ & (7)
where

B
B

Bne

The attached time index indicates that the stochastic properties of
the coefficient vector are now time-dependent. As a consequence,
the characterization of the stochastic behavior of Y, conditional on
X; .1 requires to extend the set of assumptions (2a) in order to make
explicit this time-dependence. To be concrete, we use the following

extended version of (2a)
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Bi=AB.1 + U
Bi-1 I X1~ N( Bt-1:Qt-1)
U | Xi.y~N(, ) (7a)

e,lX,,,*N(O,Z)

B:.1, Uy and g independent

where A and ¢ are nk x nk matrices.

The prior distribution for B, conditional on X, . , (the analogous to the first
line in (2a)) is now obtained by combining the first three and last lines of

set (7a) to get

Bt | Xt-1~N(B.t-1rg.t-1) (8)
where

B:—1 =A ﬂt-—1
Q1=AQ_ A+g

On the other hand, the analogous to (3) is obtained from (7) and the
last two assumptions in (7a). That is ‘

Yo | Xy, B~ N (X1 By, 2) ©)

Finally, using (7), (7a), (8) and (9) and following exactly the same line
of reasoning that led us to (6) we come out with the corresponding
posterior distribution for B, . Specifically, we can write

Btl)(t-11Y1~N(EhQI) (10)
where

B =Beo1+ Qg Xi_q M (Y, = Xo_1 By_1q)

*

Q=Qr 1 -Q; 1 Xi_ 1M X,_,Q,_,

M= (X;_,4 Q;_1 X¢-q +2)~1

It should be noted that this more general time-varying framework
delivers as a particular case the time-invariant setting described in
3.1 when A = | and ¢ = 0, in which case (7a) reduces to (2a) and (10)

to (6).
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3.3. The prior information

As it was already mentioned in reference to (6), for the updating
scheme described in (10) to be operational we need in t = 1, the first
sample period, an initial specification of £ and of the distribution in
(8), which in turn requires to specify matrices A, ¢ and Q,, and a
vector B,. This initial specification is what defines the prior information
set of the model. In section 2 we carefully described the basic
characteristic of this information. Our objective now is just to give a
formal transcription of those basic traits.

Starting with vector B, , we take the following specification

B[o'—' i=1,...,n (11)

where the hyperparameter Y, is in the ith position and represents the
prior mean of the first own lag coefficient of the dependent variable in
equation i. Coefficients for lags other than first-own have prior mean

equal to zero.

The prior information usually makes the individual components of §,
independent of each other; i.e. it makes the covariance matrix Q,
diagonal. The diagonal elements are defined as follows

Y

2
c
cf(/):(lz—i.—r—g-) % i=1,...,n ;izj;/=1,....m (12)
/e o:,

o5 =Y, Y50l i=1,..,n; h=1,...,d

where / represents equation, j endogenous variable, / lag, and A
deterministic variable. Y, controls the prior overall tightness,
determining the global degree of uncertainty with which the prior
information is incorporated in the specification process; by allowing
Y, to approach infinity the prior is made diffuse. Y; controls the
tightness of own lags relative to the tightness of lags of the other
variables in the equation; in the limiting case, when Y; equals zero,
the prior defines a set of n univariate AR (m) processes. Y, controls
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the lag-decay in the prior variance. Y5 controls the degree of
uncertainty with respect to the coefficients of the deterministic
variables. Finally, 52 and o2 are the diagonal elements of £, taken

to be a measure of the scale of fluctuations in variables i and j. Their
role in the prior is twofold: on the one hand, they allow to compare
the degree of prior uncertainty relative to the scale of fluctuations; on
the other hand, they introduce a correction for potential differences in
the units of measurement of variables.

The hyperparameterization of I itself is of course a possibility.
However, as we have already mentioned in 3.1, the Bayesian VAR
literature has concentrated® on applications that condition on X. It
has been common in practice to estimate T from a set of univariate

AR (m) models.

The prior time-varying features of the model are determined by the
matrices A and ¢, which we specify as follows

A =diag (Aq,..., A,)

A; =diag (Yg) i=1,...,n
KxK

13
(P =diag (J‘],...,Jn)Qo ( )

J; =diag (Y5) i=1,...,n

where Y, controls the coefficients of the first-order autoregressive law
of motion for B and Y, the amount of time variation actually
introduced in the model. Observe that if Ys = 1 and Y; = 0 we get the
time-invariant model. Observe also that for convenience time
variation is proportional to the prior covariance matrix of the
coefficient vector B, , which allows a relative assessment of the

amount of time variation.

Obviously, as it stands, the specification of the prior information is
incomplete, as it contains an unknown hyperparameter vector
Y = (Y4, Yz .., Y7)'. From a strict Bayesian standpoint our prior
information should not contain unknown (hyper) parameters; we
should also attach a prior distribution to them. A full Bayesian
implementation would actually require to specify that distribution and
then go through the appropriate integration process to obtain the
posterior distribution. However, two shortcuts to this computationally
demanding procedure are usual practice in the BVAR literature.

The first is to use the posterior distribution associated with a setting
of Y which directly reflects the empirical rules of thumb concerning
time series behavior that were described in section 2. For instance,

5

Sims (1989) is probably the only exception.
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Y =(1,0.2, 0.5, 1, 10° 1, 0.001) (14)

This approach was a characteristic of the early BVAR applications,
and formally amounts to assuming that Y is a degenerate random
vector with probability weight one on the specific choice.

The second approach calls for a "fine tuning" of the prior information.
What this means is to use the posterior distribution associated with a
setting of Y which has been selected according to some goodness of
fit criteria. Two commonly used criteria are to minimize a loss
function defined in terms of forecasting performance statistics and to
maximize the sample likelihood of the model.

Focusing on the latter, observe that the sample likelihood of our
model can be written as follows

;
LY, |X.1.2,7) = (15)

t=1

T * 4 - *
=072 11 for1[V2exp (- V2 (- X 1B ) o711 (Y- X 1B )

where

Or-1=Xeo1 Q¢ Xjg+ 2

So under the likelihood criteria we would choose Y to maximize (15)
and then compute the posterior associated with that hyperparameter
setting. The Bayesian rational for this criteria is that it provides a
sensible approximation to the full Bayesian integration process.
Specifically, with a diffuse prior for Y, the posterior would be a
weighted average of the posterior associated with each setting for Y,
with weights given by the corresponding likelihood value of that
setting. Thus, by choosing the posterior associated with the
maximum likelihood value of Y we actually focus on the posterior with
the highest weight in the integration process. In the case where the Y
settings with high likelihood values have similar posteriors the
approach will deliver a posterior closer to the true full Bayesian

posterior.
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4. Application: A Small Macroeconometric Model for the Spanish Economy

4.1. Goodness of Fit

As an illustration of the use of the Bayesian VAR methodology we
will now fit a model to a small set of quarterly key indicators of the
Spanish macroeconomy during the period 1970:1-1995:4. The
selected variables measure the money stock, the price and wage
levels, and real output and employment levels. Thus, we include
three nominal and two real indicators (n=5). The appendix gives
more detailed information about the data.

The presentation below will be divided in two parts. First, we will
assess the goodness of fit properties of the model. With that purpose
some within sample statistics will be computed, and the unrestricted
(UVAR) version of the model will be also estimated as a benchmark
for comparison. Second, we will perform some stochastic simulations
of the model under alternative scenarios for the period 1996-97,
focusing our attention on the likely evolution of the inflation rate.

Preliminary unrestricted regressions showed that the inclusion of four
lags of each of the five endogenous variables was sufficient to
deliver a stochastic structure for the error term compatible with the
white noise hypothesis. Based on this, we set the prior number of
lags of the model equal to four (m=4). Also, alongside with the
endogenous component, the model includes a deterministic
component with a constant term and a set of seasonal dummies
(d=4). All the endogenous variables are logged.

The prior distribution for the model's 120 coefficients was defined in
terms of a 7-dimensional hyperparameter vector. The components of
this vector are described in Table 1. The Table also contains the
maximum likelihood setting of the vector (i.e. the value that
maximizes (15)) for the period 1970-90. Noteworthy is the
combination of a small overall tightness (Y,) with a quite large value
for the component that controls the tightness of the coefficients of
other variables' lags (Y3). Given the zero prior mean for coefficients
other than those of the first own lags (whose prior mean is .96), this
combination actually implies that cross-effects have more prior
weight than higher than one own lags, which is an a priori signal of
the existence of useful interactions to explain our data set sample
variabiiity. We should also mention that the prior variance shrinks at
lag speed (Y,), and that there is a moderate amount of prior time
variation (Y;). Observe finally that the deterministic component has
the largest prior variance of the model (Ys).

It will have been noticed that the maximization period for the
likelihood has been 1970-90 rather than the entire sample period.
The reason is that, besides the likelihood, we also want to assess the
fit of the model in terms of forecasting performance, and selecting Y
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as a function of the whole sample could give rise to the criticism that
a better forecasting performance would just be reflecting the optimal
prior selection of the models.

Table 2 reports the likelihood of the model estimated with the prior
information described in Table 1 along with the values of two
forecasting performance statistics: MSE4 and MSES8. These statistics
are define, respectively, as the weighted average of each variable
mean square forecasting error at forecasting steps (quarters) 4 and
8, with the weights given by the inverse standard deviation of the
corresponding error term. Thus, they define an average forecasting
error for the model. Although computed with sample information,
these statistics actually reflect out-of-sample-type of performance, as
they are computed through an iterative process that updates the
coefficient estimates and then makes forecasts for the range of
sample information not incorporated in the updated coefficients.

Observe that the statistics have been caculated for the period
1980-95. We think of this choice as appropriate and "fair" for several
reasons. First, it contains an acceptable number of error
observations to compute the corresponding averages. Second, it
includes the subperiod 91-95 that has not been used in the selection
of the prior information. And, finally, it generates the first forecasting
ermors once ten years of data have been incorporated into the
coefficient estimates, a fair amount of time for the unrestricted
version of the model (UVAR) to get a good feeling of data patterns.
Table 2 also reports the goodness of fit measures for the UVAR

model.

As can be seen in the Table, the BVAR performs clearly better than
the UVAR in both the likelihood and the forecasting dimensions. The
forecasting improvement is specially interesting as bad forecasting
performance often signals overfitting. Thus, we may claim some
success of our BVAR specification process in dealing with the
probable overparameterization problem of the UVAR version. The
merit is higher if we consider the fact that the estimated model is a
small one; actually a size that UVAR models may handle relatively

well.

The statistics reported in Table 2 do not give information about the
relative forecasting performance of each equation. Table 3
complements Table 2 with the single equation Theil-U forecasting
performance statistics for steps 1, 4 and 8. This statistic is define as
the ratio between the mean square forecasting error for the
estimated equation and the mean square forecasting error for the
random walk model at the corresponding step. A value less than one
means, therefore, that the estimated model outperforms the random
walk forecast for the variable. As can be seen in the Table, both the
BVAR and the UVAR models outperform the random walk hypothesis
(except for employment at step 8), and the BVAR actually provides a

6 Notice, however, that, in purity, this criticism would be fully legitimate only if the prior were selected to optimize a
function of the forecasting statistics that are later used to assess the forecasting performance of the model, which

is not the case here.
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L.2. Projections

clear improvement over the UVAR version in basically all the
equations and steps.

As an additional and final piece of goodness of fit evidence we
present in Figure 2 the answer of the BVAR and UVAR models to a
question cocerning a specific sample episode: the recession of the

first half of the 90s.

As it is well known, the real output growth was negative for the
Spanish economy in 1992:4 and during the four quarters of 1993
Say we define a recession as two periods in a row of negative
growth. It is then interesting to ask what was? in 1992:4 the projected
probability of recession for 1993, Figure 2 plots the BVAR and UVAR
answers obtained from a stochastic simulation® of each model. As it
is evident from the Figure, the projected probability is similar in
1993:1 (0.91 the UVAR and 0.88 the BVAR), but while it decreases
substantially in the UVAR case (0.52 in 1993:4), the BVAR
probability is always greater or equal than 0.75.

The type of exercise reported in Figure 2 illustrates an important
feature of VAR methods: as VAR models always incorporate a
complete stochastic description of the included variables, they invite
the analyst to characterize aspect of the future stochastic evolution
of the economy, as opposed to just performing deterministic
simulations and focusing the discussion on statistically meaningless
point: forecasts. In fact, the interesting questions about the future
generally involve prebability statements.

In this spirit, we present in Figures 3 and 4 the 96% levels and
growth rates projected bands of our BVAR for 1996 and 1997, with
information up to 1995:4. Tables 4 and 5 contain the corresponding
numerical values for a set of selected periods. Overall, these
unconditional® projections look quite reasonable. Noteworthy is the
rather large range of uncertainty they imply about the future, a
standard feature of economic projections that highlights the
covenience of thinking and talking in probability terms.

One aspect of the projections that has drawn the attention of
economic agents, in general, and of policymakers in particular is the
likely evolution of the inflation rate of the economy; an indicator
explicitly included in the Maastricht convergence criteria to qualify as
a participant in the European Monetary Union process. We now
focus on this indicator.

The models for this exercise are estimated with data up to 1992:4.

These and the projections presented below are all obtained from stochastic simulations involving a thousand
draws from the error term component of the corresponding model.

In the VAR jargon, the term “‘unconditional’ refers to projections conditional on just the sample information,
whereas the term “conditional” is used when the projection is made subject to constraints on the future path of the

economy.



all the

‘nce we
lels to a
n of the

for the
f 1993.
iegative
'ojected
I UVAR
3. As it
nilar in
reases
BVAR

ortant
ate a
invite
lution
inistic
gless

uture

and
with
iding
lese
. the
e a
the

1 of
the
ator
ras
ow

and

on,
‘he

The end of 1995 official target for the end of 1996 inflation rate was
3.5%. A first interesting question then is how likely was to meet tha:
target according to our model. Based on the unconditional projectior
presented in Figure 4 we actually get a probability of 0.17 of ending
the year with an inflation rate greater than 3.5%. Thus, the target
was highly likely'™. This probability is reported in Table 6 along with
other probabilities to which we will refer next.

How about the projected probability for the end of 19977 Currently
(end of 1996) it is widely considered as reasonable to target a rate of
2.5%. Again based on the projection in Figure 4 (and so with
information up to 1995:4) our model’s unconditional probability for
the event that the end of 1997 inflation rate will be above 2.5% is
0.44; rather large actually.

Can something be done to reduce this probability? Well, let us
compute some alternative conditional projections of the model (see
Table 6).

Consider first a projection which constraint the wage rate to grow at a
rate of 3.5% during 1996:1,2 (which roughly coincides with published
provisional data) and at a rate of 4.5% from 1996:3 to 1997:4. Under
this scenario the end of 1997 inflation rate will be above 2.5% with
probability 0.70. However, if we keep the rate of 3.5% for 1996:1,2
and constraint the wage to grow at 3% during 1996:3,4 and 2%
during 1997 that probability is reduced to 0.15. v

We can also consider a scenario characterized by a deceleration of
money growth. For instance, suppose we impose the observed
growth rates for money during 1996:1,2,3 (see Table 6) and a rate of
6% from 1996:4 to 1997:4. The result is that the end of 1997
probability range for inflation is basically unaffected by the condition,
and so we estimate it will be above 2.5% with probability 0.46.

What do these projections suggest? Policymakers have been asking
lately for moderate wage increases. In their mind they may still
consider that wage indiscipline would have to be offset by a tighter
monetary policy. According to our model wage moderation certainly
is a crucial determinant factor of the future path of inflation. But a
deceleration of money growth does not seem to be an effective
strategy.

Some clues for a possible interpretations of these results can be
found in Figures 5 and 6. They contain the 96% projected effects on
the complete system of the two “anti-inflation" alternatives
considered: wage and money growth deceleration. The wage
strategy shifts down the projected probability structure for wage an
price rates, implying a very slight shift downward of the real wage
projection and upward of the output and employment projections.
The money growth strategy, however, leaves basically unaffected the
wage and price projections, but clearly shifts downward the
probability projections for output and employment growth rates.

10

At the time we are writing this (December 96) the inflation rate is actually running below 3.5%.
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5.

Thus, the money strategy not only appears as ineffective in terms of
price effects, but also costly in terms of real growth.

All this points to the conclusion that the average behavior of the
modeled economy during the period 1970-1995 has been
characterized by a rather autonomous wage evolution with clear
impact on the price evolution; an autonomous behavior that clearly

limits the impact of monetary policy on prices.

Of course, this is tentative, as we have not explored the identification
of the model. But this empirical evidence is consistent with the view
that wage growth moderation would be an effective anti-inflation
strategy that could also incentivate aggregate economic activity at, if
any, a very slight cost in terms of average purchasing power loss.

Concluding Remark

Objectivity,  reproducibility, systematization and statistical
completeness. These words summarize the most relevant
characteristics of the Bayesian methodology described in this paper;
a methodology that above all views empirical macroeconomic
analysis as an activity closer to science than to art.
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Appendix: Data

The following time series for the period 1970:1-1995:4 have been
used in this paper.

M - Broad Money (ALP). Average of monthly data.
Millions of pesetas. Bank of Spain.

W - Wage per Worker. Thousands of pesetas. Bank
of Spain.
P - Consumer Price Index. 1992 = 100. Average of

monthly data. INE and Matea & Regil (1994).

Y - GDP at 1986 prices. INE.

EMPL - Employment. Thousands of workers. INE and
Garcia Perea & Gomez (1994).
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Yy

Y2

Y4
Ys
Ys

Yy

TABLE 1

PRIOR INFORMATION
First Own Lag PriorMean . . . . . . . . . . .. . ... .. ... ...... 0.96
Overall Tightness . . . . . . . . . . . . . . . o 0.399E-3
Relative Tightness of OtherLags . . . . . . . . ... ... ... ...... 8.90
Lag Decay Tightness . . . . . . . . . . . . ... 1.0
Deterministic Component Tightness . . . . . . . . . . ... ... ..... 0.9E+3
Time Variation . . . . . . . . . . ... 0.18E-5
Lawof Motionforp . . . . . . . . . .. 1.0



TABLE 2

OVERALL GOODNESS OF FIT MEASURES

BVAR UVAR
Likelihood (1970-90) 3460.5 1723.2
MSE4 (1980-95) 51.9 69.5

MSES (1980-95) 190.2 260.7
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TABLE 3

SINGLE EQUATION U-THEIL STATISTIC

(1980-1995)

Forecasting Step BVAR UVAR

1 0.264 0.253

M 4 0.162 0.210
8 0.161 0.229

1 0.318 0.332

w 4 0.262 0.394
8 0.307 0.442

1 0.346 0.670

P 4 0.199 0.424
8 0.225 0.447

1 0.405 0.508

Y 4 0.461 0.716
8 0.567 0.811

1 0.860 0.865

EMPL 4 0.833 0.859
8 1.135 1.123



TABLE 4

BVAR MODEL

UNCONDITIONAL PROJECTIONS
(Levels. 96% bands in parenthesis)

1996: 4 1997: 4

79308951 85949092

M (+ 1632868) (+ 2413854)
849.4 880.0

W (*13.2) (+ 19.0)
118.5 121.3

P (*2.2) (£ 3.4)
10821 11165

Y (+ 108) (* 167)
12463 12816

EMPL (£211) (£ 294)
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TABLE 5

BVAR MODEL

UNCONDITIONAL PROJECTIONS

(Growth Rates. 96% bands in Parenthesis)

1996: 4 1997: 4
8.51 8.37
M *2.2) (£2.2)
3.64 3.54
W (£ 1.6) (*1.7)
2.52 2.35
P (£2.0) (£2.2)
2.97 3.18
Y (1.0) (*1.1)
2.64 2.82
EMPL *1.7)

(£ 1.6)
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TABLE 6

PROBABILITIES OF FUTURE EVENTS
(estimation period: 1970-1995)

Unconditional Probabilities

Pr(Il._ >3.5)=0.1700
964

Pr(I1,, > 2.5) = 0.4400

Conditional Probabilities

3.5 1996:1,2

Condition on W Growth <
4.5 1996:3 - 1997:4

Pr(IT,_, >2.5)=0.7010
3.5 1996:1,2
Condition on W Growth < 3.0 1996:3,4
2.0 1997:1,2,3,4
Pr (I, >2.5) = 0.1500

8.5,7.7,6.06 1996:1,2,3

Condition on M Growth <
6.0 1996:4 - 1997:4

Pr(I,, >2.5)=0.4600
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