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Abstract

This paper contains a detailed description of the VAR
methodology,! starting with a brief historical reference, continuing
with the topics of formulation, specification, estimation and
identification of VAR models, and concluding with a description of

their uses.

1

Canova (1995) provides an altemative detailed description of this methodology.



Introduction

Vector Autoregressions (VAR) were introduced by C.A. Sims in two
seminal papers. In Sims (1972) a VAR model was used to analyse
the long-standing issue of the existence of causality between
aggregate money and income. In Sims (1980) VAR models were
explicitly proposed as an alternative to standard macroeconometric
simultaneous equation models, with the basic argument that these
models were specified and identified using incredible economic
restrictions. A reasonable alternative, Sims argued, should refrain
from using controversial economic restrictions, relying on the data
as the most important source of information to identify key
macroeconomic interactions. In these terms, VAR models
appeared as suitable alternatives.

The proposal soon encountered obstacles that were the source of
discussion and research in VAR literature during the 1980s and
1990s. The first was the issue of identification: as raw VAR models
are reduced forms they do not go beyond correlations and so
cannot be used for macroeconomic analysis. The second obstacle
was actually a paradox: VAR methodology aims to avoid prior
exclusions, but because of its generous parameterization nature
this means that VAR models are not actually operational
alternatives to standard macroeconometric models as there are
usually too few degrees of freedom if the analyst includes more
than a relatively reduced number of variables in the model. In fact,
it is uncommon to find VAR models with more than five or six

variables.

Both these problems have been reasonally well solved, to the
extent that nowadays it is quite widely accepted that VAR methods
are among the most successful innovations in empirical
macroeconomics of the last two decades.



1. VAR Macroeconometrics

1.1. A Brief History

The Cowles Commission for economic research was
headquartered in Chicago from 1939 to 1945. During this time, and
particularly during the 1940s, the members established the basis
for what we will refer to as "conventional econometrics". More
specifically, the Commission made two fundamental contributions
to the field of econometrics: it campaigned for the use of statistical
inference in economics and developed simultaneous equation
models, addressing their identification, estimation and validation.

For three decades, the Commission's economic principles formed
the framework of consensus for the profession and monopolised
the theory and practice of econometrics. In the specific field of
macroeconomics, Klein (1947) marked a tumning point in terms of
constructing macroeconometric models that could be useful in
economic policy-making processes. These models became
progressively larger and were systematically used to quantify the
macroeconomic impact of different scenarios, which were defined
in terms of alterative paths of the model's exogenous variables.

In the second half of the 1970s, two U.S. authors wrote articles
that were to become classics: Lucas (1976) and Sims (1980)
questioned the uses and principles of the basic construction of
conventional macroeconometric models. Their criticism of
conventional modelling strategy was so harsh that the authors
themselves felt justified in abandoning these models and
undertaking a search for alternative strategies which would correct
what they considered to be unacceptable features of conventional
methodology. Indeed, their articles had a tremendous impact in the
United States, triggering the research programmes advocated by
the authors. This paper focuses on Sims' criticism of the

conventional models.
What did Sims criticise?

He openly criticised the methods used to construct conventional
models, arguing as follows:

The validity of the restrictions used to obtain a structural
interpretation is crucial if you aim to defend the idea that there is
some connection between reality and the model used to represent
it. Sims considered that the great majority of the restrictions used
to identify conventional macroeconometric models were
"incredible”" because they had no justification in economic theory.
In truth, he argued, there are few powerful sources of restriction
that permit identification. Among them is the distinction between
technological factors and preferences. In contrast, the number of
variables and equations generally included in conventional models
is high in comparison. In particular, the much-heralded exogeneity
of most of the variables is invention rather than fact.



This is illustrated by looking at the following econometric model:

Y, (O)=F (Yi(t-s), Y, (t-s),520;5. ) +u,(t)
(1)
Y, ()=G(Y,(t-5), Y,(t-s),520;55 )+ U, (t)

where t is a time index and, for the sake of convenience, the
model's variables have been divided into a Y, variable, which
represents the private sector, and a Y, variable which is the vector
of control variables used by economic policy makers. In
conventional modelling it has long been common practice to treat
the control vector as exogenous, i.e. reducing (1) to the following
restricted specification:

Y,()=F (Y,(t-5), Y,(t-5),520;8, ) +u,(f)
(2)
Y, (()=G(Y,(t-5), $20;55)+u,(t)

on the assumption that the uy(t) and u,(t) disturbances are
orthogonal. Certainly, the exogeneity of Y, guarantees the
identification of the F and G equation blocks, but the assumption is
very likely unjustified inasmuch as the people in charge of
controlling Y, obviously respond to the private sector events
reflected in the variability of Y,.

When model identification rests on such a fragile base, its
implications in terms of underlying economic interdependencies
are hard to take seriously, which disqualifies the model as a tool for
empirical analysis.

The alternative proposed by Sims (1980) involved specifying and
estimating macroeconometric models that did not include
controversial prior restrictions. In fact, he proposed specifying
minimally restricted models in which all variables with a clearly
economic content would be treated as endogenous. The resulting
models are now known as Vector Autoregressions (VAR). Going
back to (1), if we assume that s>0, we can write:

Yi() = F(Yi(t-5) , Yy(t-5),s>0; Be) +&(f)
(3)
Ya(f) = G(Yo(t-5) , Yi(t-8),5>0; Ba) +e5(0)

Further assuming that F (-) and G (-) are linear and that the vector
of stochastic disturbance (g,, &,) is a white noise process, (3) is the
VAR representation of endogenous variables (Y; , Y>).



1.2. VAR models

Although frequently poorly interpreted, the philosophy underlying
the VAR methodology has always been the same and progress
made during the 1980s and 1990s has made it gradually easier to
understand. VAR methodology involves accepting the challenge
implicit in acknowledging that considerable uncertainty exists as to
the true data generating process. The immediate consequence of
such an acknowledgement is that an appropriate modelling
strategy should enable the analyst to explicitly introduce this
uncertainty into the model specification process so that it can be
treated systematically and objectively. And this is precisely the idea
that justifies the insistence that there be few prior restrictions so
that attempts can be made to extract the relevant empirical
regularities by giving the economic data the most objective reading

possible.

This idea constantly underlies the methods and uses described in
the remainder of this paper.

1.2.1. Formulation

In the most common formulation, the autoregressive
representation of a stochastic process Y of dimension n is as
follows for all t:

Y(t) = B(L) Y(t) + DZ(f) + &) (4)

where B(L) = Zlo B.L® is a polynomial matrix in the lag operator

L(L® Y(D) = Y(t-5)), with B, nx n, By = 0, and m being the number of
lags in each of the endogenous n components of the Y vector
included in the model; Z is a vector with d deterministic
components and D, n x d, is its matrix of coefficients and ¢ is a
white noise vector process of dimension n with a zero mean and a
covariance matrix =. Vector AutoRegression is a natural name for
(4) when you note that it relates a vector of variables with its own

past.

Alternately, if we go back to the parametrisation implicit in (3),
clearly specifying and adding the deterministic component, the
autoregressive representation of the stochastic vector Y can be
formulated in the following terms:

Y(f) = X(t-1)B + &(f) ©®)



where
X, (t-1) 0’ 0’
xt-ne| O XV .0
n x nk
o’ 0’ Xn(t—1)’
(Y(t-1))
Voo 5,
Y(t-2)
B>
X (t-1)= . J=1...n ; B =
kx1 nk x1
Y(t - m) .
Bn
L Z() ) (8,

every block of zeros in X(t-1) is a vector of dimension k, k=nm+d,
just as are the sub-vectors B, i = 1,..., n, which contain stacked ith
rows of the matrices of coefficients B,, s = 1,..., m, and D in (4).
The sign “'” indicates transposition.

As tools for representing stochastic processes, VAR models
provide a very general theoretical framework. Granger and
Newbold (1986) state that if the number of lags (m) is not restricted
and the possibility that the model's coefficients depend on t is
considered, any stochastic process (stationary or otherwise) can
be represented as an autoregressive model.2 In addition to sharing
the minimally restrictive spirit of the methodology, this general rule
makes VAR models attractive points of departure for econometric
modelling and a framework of reference that reveals the
restrictions actually included in alternative models, inasmuch as
any simultaneous equation models or time series econometric
models can be expressed in the reduced form (4)-(5).

1.2.2. The Unrestricted VAR model

The Unrestricted Vector Autoregression model (UVAR) is obtained
when the number of lags (m) included in the autoregressive
representation (4)-(5) is sufficient to guarantee that the structure of
the residuals is statistically compatible with the white noise
hypothesis. The adjective "unrestricted” reflects the fact that the
UVAR model includes a minimum of the prior restrictions needed
to become operative: the selection of a set of variables (n),
specification of the algebraic relation (linear) that connects them

2

Although (4) and (5) do not include the possibility of time varying, this will be explicitly discussed somewhat

further on.



and a para-metrisation (k) which gives the analyst a sufficient
degree of freedom to produce statistically acceptable estimates.

The UVAR model has largely been used in applications of VAR
methodology. There are probably two reasons for this: the first is
that it is sufficiently general to be widely used as a tool for
representing stochastic processes and the other is that it is easy to
estimate, using the ordinary least squares (OLS) method, which we
will now discuss.

Estimation

Let us take as our reference the linear regression framework used
in (5). As is well known, the OLS method has desirable properties
in this framework. Specifically, it is the most efficient unbiased
linear estimator for small samples, as well as being consistent and

asymptotically normal.
Do these properties survive in the UVAR framework?

In order to answer this question, note that the difference between
the UVAR and linear regression frameworks is that the UVAR's
explanatory variables are stochastic while in linear regression they
are deterministic. The deterministic character of the explanatory
variables in the linear regression model ensures that the OLS
estimator is unbiased in small samples, giving rise to the
Gauss-Markov theorem, and also facilitates the derivation of its

asymptotic properties.

When explanatory variables are stochastic, the analyst must
distinguish between their stationarity or non-stationarity and
consider their relation to the model error term. In particular, if the
model considered is stationary and the explanatory variables are
statistically independent of the error term, the OLS estimator
maintains all the properties it had in the deterministic framework of

regression.

Certainly the UVAR model can be stationary but its explanatory
variables are not independent of the error term. More concretely, if
we have T observations generated by model (5), we have:

E [e(t-sy X(t-1)]#0, s>2 (6)

Although this characteristic is an added complication, it is not
insurmountable. Indeed, and lagged correlations in (6) aside, it is
true that a) the UVAR model's vector of disturbances by definition
constitutes a sequence of random independent vectors and, in
consequence, b) there is no correlation between the current vector
of the disturbance and the model's explanatory variables; that is to

say:

E[ety x(t-1)]=0 7)



Conditions a) and b) are sufficient to be able to apply the
Mann-Wald and Cramér theorems (see, for example, Harvey
[1981]). When combined, these theorems can be used to
demonstrate that in a stationary model with stochastic explanatory
variables, the OLS estimator asymptotically maintains the same
properties as in the linear regression framework. A stationary
UVAR model can therefore be estimated by using the OLS

method.

In the non-stationary framework, the existence of unit roots and
possible cointegration relations among the components of vector Y
does not affect the asymptotic properties of the OLS estimator.
Sims, Stock and Watson (1990) demonstrate that the estimator is
consistent and Park and Phillips (1989) and Ahn and Reinsel
(1990) demonstrate that it has the same asymptotic properties as
the maximum likelihood estimator when cointegration restrictions

are taken into account.

Yet another question that arises when estimating a UVAR model is
whether applying the OLS method to each of the system's n
equations is not less efficient than estimating them globally. More
specifically, let us assume that we have a T-size sample and, in
accordance with the notation in (5), we represent the T
observations of our model in the following form:

TK1=XB+Tnex1 (8)
where
(Y,(1)) (&,(1))
Yi(T) &,(T)
(Y,) 1 (e, L
v | [0 || |=0
Y=| " |=|Y(T) | g | =|&AT)
y . .
N R AV Y I EXC)
\Yn (T)) \E, (T) )
X, 0 0
x |0 X 0
Tnx kn



(X, (-1
X,@=0'| (YA-1y .. Y(-my zqy
YR-1) .. Y2-m) Z_2y

.
= v i=1...,

Y(7:—1)' Y(T.—m)’ Z(.T)'

L X, (T-1y)

Alternately, we can separate the n regression models included in
(8) and write:

Y, = X;B;, +¢, ;i=1..n (9)

Tx1 Tx1

where

(YO (a0

o) a0

The question which then arises is whether applying the OLS
method to each of the n models in (9) is or is not less efficient than
applying the Generalised Least Squares (GLS) method in (8). In
order to formally express this, we will write the covariance structure
of the disturbances in (9) as follows:

Cov(e,e;)=Es e, =T, ;i j=1..n (10)
TxT

where

ri=c,]~/7
[o=Z

Likewise, the covariance structure of the disturbances in (8) can be
written as:

Cov(e)=Eec'= T (11)

TnxTn



where

r=[5-z @1
and ® represents the Kronecker product.
The GLS estimator for B (Bss) is then:

Bas = (X'T x'xr'y (12)
While the OLS estimator is:

( (X, XY, )

Bors = (13)

LX) X, i)

and our question is whether By s is more efficient than Bo.s. Once
again, the regression theory provides a suitable frame of reference
for answering this question. In this case, the most useful frame of
reference is SURE (Seemingly Unrelated Regressions).

A standard result in the SURE framework is that the GS and OLS
estimates coincide when there is no contemporaneous correlation
between the components of the error term (Z is diagonal in our
notation) and/or when the explanatory variables are the same in
each of the n equations. There is no increase in efficiency in either
of these cases (see Harvey [1981], for example).

In a UVAR model T is rarely diagonal, but in contrast all the
equations share the same explanatory variables. That is to say,

X, =X, F1,....n. We therefore write:

(e X XY, )

Bos = . =Bos (14)

\(7'7)_1 Y’Yn)

The result (14) justifies the common practice of using a single
equation to estimate UVAR systems.
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1.2.3. The Bayesian VAR model

As can be seen from (4) and (5), the generality of the
autoregressive representation is based on broad parametrisation:
the number of coefficients increases exponentially with the number
of variables included and proportionate to the number of lags of

each variable.

The UVAR model described in the preceding section aims to
directly profit from this generality without any additional restriction
being imposed on the lag structure once m has been selected. As
a result, the model tends to be highly parametrised. Note, for
example, that a UVAR model with five endogenous variables, only
four lags and a constant term per equation will have a total of 105
coefficients to be estimated.

Highly parametrised models are not, however, the most suitable for
empirical analysis of macroeconomic data because
macroeconomic information tends to be scarce and, furthermore,
has a high content of random variability. A highly parametrised
model in conjunction with scarce and extremely random sample
information causes overfit, i.e. the resulting model is overfitted in
that it basically reflects random empirical variability (noise) rather
than systematic variability (signal).

In this context, analysts who want to use the UVAR framework to
analyse macroeconomic series are forced to specify models of a
limited size. Indeed, it is not customary to encounter UVAR
applications that contain more than five or six variables. This is a
truly paradoxical obstacle: as we have already mentioned, VAR
methodology aims to provide an alternative to conventional
econometric modelling by avoiding controversial prior exclusions,
but the UVAR framework is not really an operational alternative
because its generous parametrisation quickly uses up the available
degrees of freedom, even in models of a limited size, and the
resulting models are over-parametrised.

Litterman (1980) and Doan, Litterman and Sims (1984) proposed
using the Bayesian dimension of VAR methodology in an attempt
to solve the problem of over-fit in UVAR models other than by
using the standard solution that resorts to economic theory and
statistical contrasts as sources of exclusion restrictions and is
commonly used in conventional simultaneous equation
econometric models. In consonance with its spirit of minimum
restriction, BVAR methodology aims to avoid the influence of
random variability in estimation without forcing the analyst to
choose whether to include or exclude lags of the different
variables. Consequently, the resulting model maintains the prior
generality of the autoregressive representation.

The Bayesian solution appears natural when one realises how
unsatisfactory it is to have to decide whether to include/exclude
lags in situations where the analyst never knows in advance and
for certain if the value of a particular coefficient is zero or when he
is not absolutely ignorant of the value of the coefficients of the
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model, situations which are common in econometric analysis. With
the Bayesian approach such exclusions can be avoided and the
available prior information can be more realistically expressed by
assigning probability distributions to the coefficients of the model.

More concretely, the aforementioned authors proposed to
complement the autoregressive representation with a prior
distribution of its coefficients. Without being either diffuse or
placing the entire weight on a single value, this alternative offers a
reasonable range of uncertainty and therefore can be altered by
the sample information when there are substantial differences in
both sources of information. So long as the prior information is not
excessively diffuse, it will probably only be altered by systematic,
not random, variability, thus reducing the risk of over-fitting.

Putting this idea into practice involves formally specifying a
probability distribution for the vector of coefficients P and
combining it with (4)-(5). The result of this combination is a BVAR
(Bayesian Vector Autoregression) model.

Estimation

With the Bayesian approach, B is a random vector rather than a
vector of parameters. Therefore, characterising the stochastic
behaviour of Y(f) conditional on X(t-1) requires explicit assumptions
as regards both B and &(f). In the BVAR approach, the following

hypotheses are common:

B|X(t-1)~N@B(t-0.Q(-1)
e(t) | X(t-N~N(OZ) (15)
B and &(t) are independent

The hypothesis of normality is not inevitable, but it is certainly
convenient. In other words, what we are really searching for is a
flexible model that will allow us to include prior information in our
analysis. The hypothesis of normality enables us to exploit the
convenient properties of the Gaussian framework in order to obtain

this model.

Let us begin by noting that, from a Bayesian standpoint, the
problem of estimating our econometric model boils down to
applying the Bayes theorem in order to obtain in every t the
posterior distribution of [B] X(t-1), Y(0)] by combining the prior
distribution of [B] X(t-1)] in (15) and the sample information. We will
concentrate first on obtaining the posterior distribution and then
proceed to discuss the choice of prior information.3

From the strictly Bayesian viewpoint Z would also be part of the problem of estimation. In other words, the
problem would involve obtaining a posterior distribution from a prior distribution for [B, 2| X(t-1)]. However,
literature on BVAR models customarily proceeds by conditioning in Z and focusing attention on the vector of
coefficients B. This paper will work within this framework.
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Theil's mixed estimation technique (Theil [1971]) provides a
suitable framework for obtaining the posterior distribution of our
vector of coefficients. On the one hand, it permits us to combine
different pieces of available information (in this case, prior and
sample information) and, on the other, it can be interpreted in
Bayesian terms.4 In order to apply the mixed estimation technique,
we first need to express our prior information in the form of dummy
observations. Note specifically that the distribution in the first line of
equation (15) can be expressed as follows:

r(t-1) = R(t-1) B+ n(t-1) (16)
where

rt=1 = Wit-10" p(t-1)

nk x1

R(t-1) = W(t-1)"

wit -n1)x nW(t —1) = Ot -1)
n(t-1 ~ N(,I)

As mentioned earlier, (16) is our prior information about the vector
of coefficients B. A second piece of information stems from (5),
which defines the connection between the vector of observables
Y(f) and B, and which we repeat below for the sake of

convenience:
Y(f) = X(t-1) B+ ¢(t) 17)

The vector of disturbances ¢(t) is characterised by the second line
of (15). According to the third line, it is independent of the vector of
disturbances n(t-1) in (16).

The linear stochastic restrictions (16) and (17) contain the
information on B which is available in f, and can be combined as

follows:

[r(t—1)] _ [ R(t—1)] B+ [n(t—1)} (18
Y(t) X(t-1) g(t)

4 Posterior distribution can be obtained in several different ways. For example, Ballabriga (1991,1997) uses the
updating scheme provided by the Kalman filter.
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where

"o lo 2]

Theil's mixed estimator, B, Bux iS then obtained by applying the
GLS method to (18). The result is as follows:

B ()=l =07 + Xt == Xt - 0] [t - 07" Bt - )+ X(t -1z Y(t)]
(19)

Cov B (O)=[0tt -0 + X(t =1y =" Xt -]

The question now is what connection there is between the
estimators in (19) and the posterior distribution of [ | X(t-1), Y(Ol.
And the answer is obtained by giving Theil's mixed estimation
technique a Bayesian interpretation, considering (16) as a second
sample independent of the observables [Y({), X(t-1)] in (17). Using
the prior information included in the form of a dummy sample in
(18), we shall proceed as though our prior information about B was
diffuse (uniform). By then combining the likelihood of (18) with B's
diffuse prior information we obtain its posterior distribution, which
turns out to be normal, with the mean and variance expressed in
(19) (see Theil [1971]). In other words, we write:

[ Xt -1, Y] - N(B(t), b)) (20)

where

B(t) = Bux(®)
Q(t) = Cov Bux (1)

We can therefore conclude that conditioning on Z, (19) actually
provides a way to update prior information on [B | X(0)]. This
enables us to process the sample T observations in order to obtain
the posterior distribution of [ | X(T)], thus completing the Bayesian
estimation process.

Time variation of the coefficients

The description of the BVAR methodology thus far has been based
on the assumption that the vector of coefficients B has a
distribution that does not vary over time and which successive
sample observations can estimate with progressively greater
precision. However, analysts commonly believe that their sample
data might contain structural changes. This belief can be explicitly
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included in the model by accepting as part of the prior information
the possibility that the distribution of the vector of coefficients B

might change over time.

Time variation is a standard characteristic of BVAR models. It
makes the specification process more flexible and provides a
useful way to detect possible structural changes in the sample
without having to explicitly model the source of the change (for
example, a change in economic policy regime).

The most common way to incorporate time variation into the BVAR
framework is by specifying the law of motion of B as a first order
autoregression process. This law of motion is considered sufficient
to detect possible shifts in the model's linear structure and also
permits the analysis to be kept within the Gaussian framework. In
fact, the framework described in the foregoing section can be
easily generalised in order to incorporate this type of time variation.
Specifically, the model's vector of coefficients now takes the

following form:

[B.(1)]
B, ()

Bit)=| (21)

B, (8)]

where the added time index indicates that the stochastic properties
of the vector depend on time. As a consequence, the
characterisation of the stochastic behaviour of Y(f) conditioned in
X(t-1) requires that the hypotheses contained in (15) be extended
in order to account for this time dependence. The extension used

is the following:

B(f) = SB(t-1) + u(t)
B(E=1) | X(t-1) ~ N(B(t-1), (t - 1))
u(t) | X(t-1) ~N(O, o) (22)
g(t) [ X(t-1) ~N(Q, %)
B(t-1), u(f) and &(t) are independent

where S and ¢ are square matrices of order nk.

The prior distribution of [B(t-1) | X(t-1)] (i.e., previously the first line
of (15)) is now obtained by combining the first three lines of (22),

which gives us:
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Bee-1| xt-0]~N@B*E-1. Q*¢t-1) (23
where

B*(t-1)=SB(t-1
Q*(t-1)=SQt-1) S+

The analysis contained in the foregoing section is thus valid if in all
t, B(t-1) and Q(t —1) are replaced by p*(t-1) and Q *(t-1),
respectively, resulting in the following updating scheme:

B (f)=[Q% (=1 + X(¢ -1 =7 Xt —D] fa* ¢ -1 Bt -+ X(t -1y =" Y(t)]
(24)

Cov B (=2 (E -1 + X(t =1 =" X(¢ -]

Lastly, note that the time variation framework generates, as a
particular case, the framework without time variation when S is the
identity and ¢ is the null matrix, in which case the hypotheses in
(22) are identical to the hypotheses in (15) and the updating
schemes (19) and (24).

Prior information

As mentioned in reference to (19), if the updating scheme in (24) is
to be operational the first sample period (f=1) must necessarily
include an initial specification for the matrix £ and the prior
distribution in (23), which in itself requires that the matrixes S, ¢
and Q(0), and the vector B(0), be specified. This initial specification
is what defines the model's prior information.

The choice of prior information is, without a doubt, the most
distinctive feature of the BVAR model specification process. This
information can, in principle, take a variety of forms and come from
a variety of sources and it is precisely this that makes the method
attractive. However, and as mentioned earlier, within the
framework of BVAR methodology its principal aim is to reduce the
risk of overfit without affecting the generality of the model. In this
sense, it is purely instrumental information which, as such, does
not pretend to be true on average, but does aim to provide a
realistic range of data-generating mechanisms, from among which
analysts can choose the most appropriate for explaining the
variability of their sample data.

Moreover, and in consonance with their instrumental nature, the
source of prior information that is common to the BVAR framework
is statistical-empirical and lacks economic content. This economic
"neutrality" aims to make the resulting specification acceptable to a
wide spectrum of analysts, whose visions about the true structure
of the economy analysed might differ significantly.
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Specifically, the backbone of prior information consists of three
empirical regularities which are characteristic of statistical time

series analysis.

1) The current value of a series is the best way to predict its
future value (random walk). This hypothesis reflects the
behaviour of many economic time series.

2) Recent lagged values of a time series usually contain more
information about their current value than lagged values dating
from further back in time.

3) The lagged values of a time series usually contain more
information about their current value than the lagged values of

other variables.

As indicated by the formal description of the model contained in the
foregoing paragraphs of this section, and in particular (23), prior
information has been included by means of specifying a normal
multivariate distribution. As previously mentioned, the assumption
of normality is not inevitable. We would like to stress this once
again: the real aim is to ensure that the prior information contains
regularities 1) to 3) above. The assumption of normality allows us
to include them and furthermore facilitates analysis by enabling us
to use the Gaussian framework. In fact, the most direct procedure
is by defining (23) in t=1 as a set of normal independent nk
distributions, one for each of the model's coefficients, parametrised
individually in accordance with regularities 1) to 3). However, this
strategy of individual parametrisation leads to overfit, which is
precisely what we are striving to avoid.

An alternative is to assume prior independence among nk
distributions, but introducing a functional dependence among all of
them and a reduced set of parameters which makes it possible to
control their basic dimensions so that they reflect regularities 1) to
3). In BVAR jargon these parameters are called hyperparameters
in order to distinguish them from the term parameter as used in
standard econometrics.

Figure 1 illustrates the prior density function for a representative
equation of system (5) and shows how to include regularities 1) to

3):

1) is included by specifying an average equal (or close to) one for
the distribution of the coefficient of the first own lag and equal to
zero for the remaining coefficients.

2) is included by reducing distribution variance as the lag increases
so that the greater the lag, the greater the likelihood that the
distribution of its coefficient will be around zero.

Lastly, 3) is introduced by assigning a higher value to own lags
(row 1) than to the lags of other variables (row 2), increasing the
likelihood of these latter being zero.
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Figure 1 also gives an idea of the nature of the set of control
hyperparameters. Thus, one of the hyperparameters usually
controls the average coefficient of the first own lag. A second
hyperparameter controls the distribution variance of the coefficients
of the own lags and a third controls the coefficients of other
variables' lags. A fourth hyperparameter controls the speed at
which the variance of the coefficients diminishes as the lag under
consideration increases. Moreover, it is usually assumed that the
analyst does not have specific information about the deterministic
component and therefore the prior distribution of the coefficient is

diffuse (row 3).

An additional hyperparameter is usually specified in order to
control the overall extent of uncertainty with which the model
coefficients are introduced. This is crucial in determining the
relative weight assigned to the prior and sample information,
respectively. In terms of Figure 1, an increase in this
hyperparameter would provoke a generalised increase in the
variance of the distributions so that the relative weight of the prior
information would be reduced.

Certainly, in specific applications the analyst may wish to control
other relevant dimensions of the prior information (for example,
seasonal or long-term dimensions), but the dimensions described
here are common to all BVAR applications.

Returning now to a formal description of the model, we will
transcribe these ideas in terms of their defining elements (23).

Starting with the vector B the specification is as follows:

B;0)=|<,| :i=12..,n (25)

where the hyperparameter t, occupies the i™ position and
represents the prior average of the coefficient of the first own lag of
the dependent variable in equation i. The prior average coefficients
for the remaining retards, own or otherwise, are equal to zero.
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As mentioned earlier, prior information usually assumes
independence between the components of B(0), i.e. it starts from a
diagonal matrix Q(0), whose principal diagonal elements are
specified as follows:

c;(/)z(%)o: e P N Y — B

lt. 0,2

&)

0_2
o;(/)=(12_33_)[_ij FlLewn g E1, L m (26)

yh=1, ..., d

3

2 _ 2 -
Oin =T, Tg T, =1, .,

where / represents equation, j endogenous variable, / lag and h
deterministic component. <, controls the overall degree of
uncertainty with which the prior information is introduced to the
model estimation process; as t, increases the prior distribution
loses its precision, becoming diffuse in the limit. T3 controls the
degree of uncertainty of the lags of other variables relative to own
lag uncertainty. In the limit, when 1, is equal to zero the prior
information defines a model composed of n univariate AR(m)
processes. t, controls the speed at which the variance decreases
with the lag and Ts controls the relative uncertainty of the

deterministic component. Lastly, o and cfj represent the

elements of the principal diagonal of T and are a measure of the
size of the fluctuations in variables j and j. Their role in the prior
information is twofold: on the one hand, they enable you to
compare the degree of uncertainty with the range of fluctuations.
On the other, they introduce a correction to possible differences in
the units for measuring the variables included in the model.

Although it is possible to hyperparametrise ¥, usual practice has
been to condition in 3, estimating this from the resulting residues in
AR(m) univariate models estimated by the OLS method.

It now remains to characterise the time variation of the model,
which depends on the S and @ matrices and is specified as follows:

S=diag (S,, ..., S,)
S, = diag(t,) i=12,...n

kxk

(27)
@ =diag (4, ..., J,) Q(0)
J, = diag(t,) =12,...n
kxk

where 14 controls the coefficients of the first order autoregression
process that characterises the law of motion of the vector of
coefficients B, and T; controls the degree of time variation actually
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introduced in the model. Note in particular that with =1 and t,=0,
you obtain a version of the model which does not vary over time.
Note too that time variation is proportionate to the prior variance
matrix of vector B(0), which permits a relative evaluation of the

degree of time variation.

At this point, you will have observed that the specification of the
prior information shown above is incomplete inasmuch as it
depends on t, which is an unknown vector of hyperparameters.
From a strictly Bayesian viewpoint, prior information should not
contain unknown (hyper)parameters. Indeed, a strictly Bayesian
implementation would require that distributions be specified for the
hyperparameters and then integrated in the relevant range in order
to obtain the posterior distribution. However, BVAR applications
usually opt for two alternative approximations to this tedious

procedure.

The first involves using the posterior distribution associated with a
particular numerical value of the vector 1 which directly reflects the
empirical regularities 1) to 3) described above. For example:

1
02
05
1= 1 (28)
10°

-
0,001]

This was standard procedure in the first uses of the methodology
and is the same as assuming that the t vector is a degenerate

random vector with probability one in the specific choice (28).

The second approximation procedure involves using the posterior
distribution associated with a particular numerical value selected in
accordance with some goodness of fit criterion. Two criteria which
are commonly used are the minimisation of a loss function defined
in statistical terms of predictive capacity and the maximisation of
the model's likelihood function.

Focusing on this latter criterion, we note that, assuming normality,
the likelihood of our model is as follows:

lilL(Y(t) l X(t - 1), 2'1;) = (2,":)-7'12

(29)

TT | o(t=1)] 2 exp[-172 (v(t)- X(t =1 B* (t =)'t =)™ (V- X(E - DB (t - )]

t=1
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where
o(t-1)=X(t-1) Q*(t-1) X(t-1)'+2

The approximation criterion based on the likelihood function then
involves maximising (29) with respect to t and obtaining the
posterior distribution associated with this optimum vector. The
Bayesian justification of this procedure is that it can reasonably
approximate the complete integration process. Specifically, if a
diffuse prior distribution is assigned to 1, the posterior distribution
of the vector of coefficients B will be a weighted average of the
posterior distributions associated with each specific value of t, with
the weights being the value of the likelihood at that specific value.
So, by choosing the posterior distribution associated with the value
of T maximised in (29) we are in fact using the most heavily
weighted posterior distribution in the integration process. When
high likelihood values of 1 give rise to similar associated posterior
distributions, the procedure provides a reasonably approximate
approach to the true posterior distribution.

We shall conclude this section by stressing that the Bayesian VAR
methodology is very flexible in that it enables us to use our sample
information to analyse a wide range of parameters. This in turn
gives a wide generality of statistical representations that embraces
everything from the univariate AR model to the UVAR model,
which is a particular case of the BVAR framework obtained when
the prior information selected is diffuse, i.e. when 1, tends to

infinity, in which case Q*(0)" tends to zero and, as can clearly be
seen in (24), the updating scheme of the prior information
generates the OLS estimation of the model.

The efficiency of joint estimation

In the case of the UVAR model we concluded that single equation
estimates are efficient because all the equations have the same
explanatory variables. But does the same hold true of the BVAR

model?

Using Theil's mixed technique to make our estimates enables us to
again use the SURE framework to demonstrate that the answer to
the above question is negative. Specifically, we attempt to verify
whether the set of explanatory variables continues to be the same
for all equations in the system when prior information is introduced.
This can be done by going back to equation (18) which combines
prior and sample information and in which X,, and R, are the set
of explanatory variables. Generally speaking X., # R.,, which
means that the BVAR model contains two blocks of equations
whose explanatory variables differ and the results of the UVAR
framework are therefore not applicable.

In fact, the condition that makes single equation estimates efficient
in the BVAR framework is that the a priori variance of the
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coefficients is a multiple of the residual variance in each one of the
equations.5 However, the type of prior information generally used
in the BVAR applications described in the foregoing section does
not meet this condition because each equation stresses the own
lags, which means that the variance of own lag coefficients is
greater than the variance of the other coefficients in the equation.
Therefore, joint estimation of all the model equations is a requisite
for efficiency in the BVAR framework.

Cointegration

Readers will have observed that at no point in our description of
the BVAR model have we referred to whether the modelled
stochastic process is stationary or non-stationary. In fact, we have
deliberately avoided doing so in order to demonstrate that the
Bayesian approach to estimation is equally suitable in both cases.
As mentioned earlier, the important thing is that the prior
information presents the sample information with a wide range of
choice regardless of whether or not the process is a stationary
one. Moreover, likelihood —the other feature of the estimation
process— is also unaffected by whether or not the process is
stationary inasmuch as the assumption that the joint density of the
sample is normal is not contingent on whether the process
analysed is stationary or not. Thus, in principle, there is no real
reason for adopting different approaches to analysing stationary
and non-stationary series.

Nevertheless, it is true that this stance has been criticised in cases
of non-stationary processes with unit roots and . potential
cointegration relations. Latkepohl (1991), Clements and Mizon
(1991) and Phillips (1991) have all suggested that by starting with
prior information that treats all coefficients as independent both
within and across equations and assigns a mean equal, or close to,
one to the first own lag and zero to the others, the Bayesian
estimate of VAR models tends to be biased towards systems made
up of univariate AR models, and is incapable of detecting the
possible shared stochastic tendencies that characterise
cointegrated processes. Sims (1991) has countered by suggesting
that such criticism is ill-founded. He argues that, due to the
property of superconvergence which characterises unit roots and
cointegration relations in the data, these aspects of estimation tend
to be clearly revealed regardless of the type of prior information

used.

Alvarez and Ballabriga (1994) contributed to the discussion by
altering the customary prior information of BVAR models so that it
explicitly acknowledges the possible existence of cointegration in
the process analysed. The authors carried out a brief Monte Carlo
experiment, using a cointegrated process that makes it possible to
weigh the capacity of different estimation methods to detect the
long-term relationship. When the prior is fine-tuned, the results
obtained support Sims' thesis rather than that of his critics.

5

See Doan, Litterman and Sims (1984).
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1.3. Identifying VAR models

The foregoing methodological description contains no economic
argument other than the minimum implied by the selection of the
economic variables to be analysed. Readers might be bewildered
by this, but it is one of the things that helps establish a sort of
brand image for VAR methodology: the clear differentiation
between the statistical and economic aspects of the analysis which
respectively define the VAR model specification and identification

processes.

The foregoing discussion focuses on model specification. Standard
UVAR and Bayesian (BVAR) specification methods have been
proposed but in both cases the objective was to exploit the
statistical generality of the autoregressive representation (4)-(5)
without contaminating it with arguments of an economic nature.
The result is therefore a purely statistical model. Or, more
precisely, a reduced-form model which, as we all know, is the
econometric term for statistical representation models which have

no economic content.

Certainly, obtaining a reduced form can in itself constitute an
objective if your aim is simply to predict and/or analyse a set of
correlations. However, when the objectives of your analysis include
other issues, such as evaluating the effectiveness of monetary
policy or the relative importance of supply and demand factors in
explaining macroeconomic variability, the reduced form s
insufficient and should be no more than a step midway along the
path to a statistical model in a structural form that contains the
economic information necessary to be able to reply to the
questions of interest. As we noted earlier, VAR methodology aims
to be an operational alternative to conventional macroeconometric
simultaneous equation models, whose principal aim is precisely to
reply to questions of interest such as those mentioned above.
Therefore, the additional effort involved in obtaining an
interpretable model from the reduced form is generally unavoidable
when applying VAR (UVAR, BVAR) methodology. This is the
model identification stage.

Sims' seminal work (1980) and its succeeding applications soon
revealed that VAR model identification was one of the weakest
points in the proposed methodology. Indeed, the opinion that VAR
models were simply reduced forms and, as such, not valid in terms
of quantifying economic relations quickly became widespread.

However, this criticism was not strictly justified inasmuch, as we
will see in the formal description set out below, initial applications
of the methodology used a contemporaneous causal chain which is
the equivalent of a recursive simultaneous equation structural
model. Nevertheless, it is true that a recursive structure is rarely
suitable for describing economic reality. VAR models could
therefore certainly be criticised in terms of their identification, not
because it was lacking but because its credibility was questionable.
This is a new paradox if we recall that, when originally proposed,
the incredible identification of simultaneous equation models was
the motivating criticism.
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Because it was one of the most controversial features of the
methodology, the identification stage accounted, and continues to
account, for a good part of the academic discussion on the subject
of VAR models. A satisfactory solution to the problem was found
and present-day identification: methods are considerably better
than those used in the initial applications and simultaneously
respect the largely unrestricted spirit of the methodology.

Formal description

As is a well-known fact, identifying an econometric model is a
generic problem that refers to the model per se, not to the
methodology of modelisation. A common way to address the
identification problem is by presenting it as the obtention of a
structural model from a reduced form. The structural model can be
interpreted in economic terms and will be identifiable if it consists
of statistically distinguishable equations which, as such, can be
retrieved from the statistical variability summarised in the reduced

form.

As mentioned earlier, the problem is not solved by opting for one
methodology or another: all methodologies must address it. What
can differ from one methodology to another is the way the problem
is approached. Thus, conventional simultaneous equation models
manage to make their equations statistically distinguishable by
including or excluding variables which are treated as exogenous.
Taken to unwarranted extremes, this strategy provides an
identification that is simply an illusion or, as Sims (1980) puts it,

incredible.

In contrast, VAR methodology rejects the assumption of
exogeneity and uses an identification strategy that combines a
minimum of exclusion restrictions with conditions on the
probabilistic structure of the model's error term. More concretely, a
VAR model is referred to as structural when the statistical
distinction in its equations is obtained by imposing a set of
restrictions (not necessarily of exclusion) on the contemporaneous
matrix of coefficients, such that the components of the model's
error term are orthogonal which, in tum, allows us to interpret them
as primitive sources of economic variability.

Orthogonal error terms are not a general requisite for conventional
structural models and reveal a profound conceptual difference in
terms of whether, economically speaking, the relevant variability is
the "total" or the "unexpected"”. Conventional models proceed as
though the total was the relevant variability and therefore do not
insist that disturbances be orthogonal. However, orthogonal
disturbances are essential when you want to analyse the dynamic
implications of the model in the conviction that relevant variability is

the unexpected.
The orthogonality requirement also explains why "model

identification” and "orthogonalisation of the error component” are
commonly used as interchangeable terms in VAR model literature.
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To illustrate this more clearly, let us repeat the reduced form used
in(4),ie.’

Y(f) = B(L) Y(t) + DZ(t) + &(f) (30)

where the components of ¢(f) are generally correlated, with a
covariance matrix equal to £ in all . Identifying a VAR model can
then be seen as obtaining a linear combination of &(f), which is a
new vector of disturbances whose components are orthogonal and
interpretable in economic terms. Or, to put it more formally,
obtaining an A, n x n matrix so that, in all t.

Ae(f) = v(t) (31)

where the components of v(f) represent isolated sources of
economic variability (fiscal or monetary, private or public, supply or
demand, etc.), which means that their variance and covariance
matrices are diagonal and can be normalised to the identity without
loss of generality. Note that the A matrix is the link between the
reduced and structural versions of the VAR model. In fact,
premultiplying the reduced format VAR model (30) by A gives you
the structural VAR model:

AY(f) = AB(L) Y(t) + ADZ(f) + v(t) (32)

Or its equivalent:

C(L) Y(t) = GZ(t) + v(t) (33)

where

C(L) = A(l- B(L))
G=AD

Note that model (32)-(33) is actually a conventional structural
model with the peculiarity that all its predetermined variables,
except the deterministic component, are lagged endogenous
variables and that the error component is orthogonal: peculiarities
which are precisely what define it as a structural VAR model.

Equations (32)-(33) also enable us to more clearly see how VAR
models can be identified by using a combination of restrictions in

6

For the sake of simplicity we will continue using a model whose coefficients are not time dependent.
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the contemporaneous coefficient matrix and condition on the
probabilistic structure of the error term: matrix A contains the
coefficients of impact and should be chosen in such a way as to
guarantee both the fulfilment of (31) and make a statistical
distinction between the system's equations so that the structure is
effectively identified. A choice of A which guarantees both
conditions involves specifying A as a lower triangular matrix. This
was the usual choice in the first applications of the methodology
and, as can now be clearly seen, is the equivalent of a
contemporaneous causal chain and makes model (32)-(33) a
recursive structural model.

The recursive structure appears to be technically correct in that it
produces an orthogonal vector and a structure composed of
distinguishable equations. However, as has already been
mentioned, recursive structures are not generally appropriate for
describing economic reality because they do not include the
simultaneous relations which normally characterise this reality.
They can therefore be criticised for using contemporaneous time
restrictions that are difficult to believe and, as a consequence, they
fail in their attempt to isolate sources which could be believably
interpreted in economic terms, which is a fundamental feature of

the identification process.

The literature on VAR model identification has gone beyond
recursiveness to consider more general specifications of matrix A
which produce more credible structural models. We used two types
of identification restrictions to obtain these specifications: short-

and long-term.

Short-term restrictions are zero in certain positions in Matrix A and
are normally justified by the fact that some economic agents
receive information flows with a certain delay. For example, the
delay with which monetary authorities receive information about
macroeconomic evolution could justify the assumption that interest
rates do not respond to disturbances in production and price levels
at the exact moment they occur: two zeros in matrix A which
enable us to identify the supply and demand of liquid balances in
the economy. The use of the adjective "short-term” is clear: the
restriction is exclusively limited to the contemporaneous effect of

certain disturbances.

Long-term restrictions are usually based on economic theory and,
as their name indicates, restrict the long-term effect of certain
disturbances on certain variables. For example, the model can
introduce the restriction that monetary disturbances do not have
real long-term effects, a restriction which is based on the widely
accepted principle of long-term monetary neutrality.

The use of long-term restrictions requires a stationary model so
that the long-term effects are well-defined, i.e. they are not
explosive. In formal terms, imposing these restrictions is
tantamount to restricting certain linear combinations in the matrix
of long-term effects associated with the moving average (MA)
representation of the structural model. Note specifically that, with a
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stationary model, the polynomial C(L) in (33) can be inverted,
giving rise to the following MA representation for the

non-deterministic component of Y({):

Y(t) - M(L)DZ(t) = M(L)A™ v(t) (34)

where
ML) = (/- B (L))"

The matrix of the long-term effects of the various structural
disturbances is the sum of the matrices which define the M(L) A”
polynomial, each of which determines the effect of the
disturbances in a different time horizon. Thus, the long-term effects

matrix is written as:
ML=1)A"=> M A" (35)
i=0

And, as mentioned earlier, these long-term restrictions are
tantamount to restricting certain linear combinations of the
elements of the matrix shown in (35), which could be expressed as

follows:

C, vec[MU)A™]=c (36)
pxn

n?x1 px1

where we have used the vec(-) operator and p represents the
number of restrictions.” In the particular case which eliminates the
long-term effect of the disturbance i in the variable j, the value of ¢
will be nil and the C matrix will have the dimension 1 x n? with a
one in the entry [(-1)*n] + i, i, j = 1,...,n, and zeros in the others.

It is important to note that this set of short and long-term
restrictions creates a very frugal framework for identification from
the standpoint of restrictions: when exclusion is used, it is used
only with contemporaneous impacts, without excluding possible
lagged effects. When the lagged effects are restricted the
restrictions are loose, conditioning only the long-term effect. This is
in line with our earlier observation that the VAR framework of
identification respects the little-restrictive spirit of the methodology.

7

The vec(-) operator turns matrixes m x n into vectors mn x 1 stacking their n columns.
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Estimating the structural model

The estimation of structural VAR models still remains to be
discussed, i.e. estimating the G matrix and the C(L) matrix
polynomial, in accordance with equation (35). Let us therefore go
back to equations (31) and (32)-(33).

Let us start by observing that in accordance with (31), the
compatibility between the variance and covariance matrices of
disturbances in reduced and structural models means that the
relation between £ and the matrix of contemporary effects Ais as
follows (remember that the covariance matrix of the structural error
term was normalised to the identity):

AZA'=] (37)

or its equivalent:
r=ATA" (38)

Note that (32)-(33) suggest that the structural model could be
estimated in two steps:

Step 1 —>  Estimate the matrixes of coefficients D and B(L) of
the VAR reduced form. Then take the resulting
sequence of errors £(t) and use them to estimate 2

3, starting with the resulting sequence of errors.

Step2 —> Use &(t) and $ from Step 1 together with (36) and
(38) to obtain the maximum likelihood estimator for
matrix A.

By combining the estimators D and B(L) of the first step and the
estimator A of the second you will then be able to obtain the
estimators G and C(L) of the structural model.

Step 1 does not introduce any new elements. It simply estimates
reduced VAR by using the methods described in sections 1.2.2 or
1.2.3 of this paper, depending on whether the classical or Bayesian

version of the model is used.

Step 2 aims to maximise, with respect to the A coefficients matrix,
the sample likelihood of the series of reduced disturbances
obtained in Step 1, bearing in mind possible long-term restrictions
(36) and the compatibility requirement (38). To specify, note that
when normality is assumed the likelihood of the series £(f),
t = 1,2,..,T is as follows, when logs are used and constants

ignored:

)
—_2_ n|s|- % 3 &ty = &0 (39)

t=1
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In Step 2 there is the problem of obtaining the A matrix which
maximises (39) subject to (36) and (38). Note that the number of
different conditions in (38) is not n? but (n° + n)/2, inasmuch as X is
symmetrical. The maximum number of contemporaneous
coefficients different than zero that can be determined when using
the conditions in (36) and (38) is [(n* + n)/2] + p. The remaining
coefficients are equal to zero, constituting short-term identification
restrictions. Thus, when long-term restrictions (p=0) are not used,
the number of short-term restrictions (zero in matrix A) should be

at least equal to (n? - n)/2.

The 2-step estimation procedure described above is, in fact, the
procedure used in VAR methodology applications. It is attractive on
two grounds. First, it is in line with the idea of clearly separating the
statistical restriction specifications from economic identification
which, as we have mentioned earlier, is a distinctive characteristic
of VAR methodology. Secondly, the method generates efficient
estimators of structural coefficients inasmuch as they are
equivalent to those obtained by directly estimating G and C(L)
using the maximum likelihood method. The reason is that, when
normality is assumed, the information matrix of the likelihood of
model (33) is diagonal with respect to [D, B(L)] and A, a condition
established in Durbin (1970) in order to justify the efficiency of the

2-step procedure.

Pioneering articles on the identification framework described in this
section are: Bernanke (1986), Blanchard and Watson (1986), Sims
(1986) and Blanchard and Quah (1989).

1.4. Uses of VAR models

In the section on identification we noted that VAR differs from
conventional methodology in that requires structural disturbances
to be orthogonal. The objective of this is to isolate primitive sources
of economic variability which stem from the behaviour of either
supply or demand in the public or private sector or in the export or
domestic sector of the economy. It should therefore come as no
surprise that the analyst who uses VAR modelling methods tends
to be genuinely interested in the dynamic effects of these primitive
disturbances on the evolution of the observable variables that
characterise the economic framework to be studied, i.e. in the
effects of v on Y, to use the terms of our notation.

For the same reason, neither should it come as a surprise that the
analyst is more interested in recovering the structural MA
representation in (34) than the structural autoregression
representation in (32)-(33) because it is the MA representation that
directly shows the effect of v on Y. In fact, as we will see below,
typical uses of VAR models almost all deal with obtaining and
analysing the MA representation of the model.

These uses include calculating the model's impulse responsé
function; the forecast error, variance decomposition and obtaining
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future projections. Generally speaking, VAR, like all econometric
models, are used for hypothesis testing and future projections.
However, VAR models emphasise the sources of primitive
variability, which means that hypotheses are not tested simply on
the basis of the statistical significance of certain structural
coefficients, but on the global pattern of interrelations embedded in
the model and shown through the impulse response function and
the variance decomposition. Similarly, the exogenous variability
which can condition future projections does not stem from the
variability of observables determined outside the model but from
the very sources of primitive disturbance contained in the model.

Before continuing, we should briefly comment on the existence of
the MA representation of the model. As is well known, this
representation exists in the stationary case because the
autoregressive model can be inverted. However, the same is not
true of the non-stationery case associated with the existence of
unit roots, which is so common in empirical analysis in economics.
In this case, the auto-regressive model cannot be inverted and
therefore has no MA representation because the sequence

M(L) A" in (34) is explosive.

Does this mean that analysis should be limited to the stationary
framework? In order to verify that the answer is no, go back to
equation (33) and try replacing the left-hand side of the formula
with Y(t-s), s = 1,....,H, using the inherent probabilistic mechanism
(33). This tedious but simple process will yield the first H terms of
the MA form of the model, expressing Y(f) as the sum of two
components:

Y(t) =E M, A" v(t-s)+ E,_, Y() (40)

s=0

Or its equivalent:

H-1 __
Y(t) = M, v(t-s)+E_4Y() (41)
s=0
where
M=M_A" ; s=0..,H-1

E.,=the expected value with the information
available in t-H

The first component in (41) represents the contribution to the Y(f)
value of the innovations that occurred between the periods t-H+1
and t, both inclusive. This contribution is determined by the sum of
the first H terms of the model's MA form. The second component is
the average projection of Y(f) based on available information in the



30

t-H period, which depends on the vector of Y observables between
the periods {-H and t-H-m+1 (remember that m stands for the
number of lags) and the deterministic component between the
periods f-H+1 and t.

The advantage of decomposition (41) is that it exists for any finite
H and regardiess of whether or not the process analysed has unit
roots. The description of uses set out below is therefore based on

this decomposition.
The impulse response function

As its very name implies, the impulse response function quantifies
the effect of isolated impulses equal to one in each of the model's
n disturbances on the system's n variables over a time horizon of H
periods. In other words, the function quantifies the effect in Y, 0,
~1,...., n of the disturbance v; (t-s)=1, j=1,...., n, which occurred s
periods earlier, s=0,...,H-1. Calculating the function for the entire
system thus gives you n x n series of H length.

You will immediately see that these n x n series are the same as
those which make up the sequence of matrices M, s=0,..., H-1 of

the first component of (41). In order to verify this, observe the
following sequence of disturbances:

v(t-§) = (0,..,1,,0..,0) , 0<§ < H-1
(42)

v(it-s) =0 , S8

In other words, the /" component of v is disturbed in one unit in the
period t—5. Note that when you use sequence (42) to calculate
the first component of (41) the result obtained is equal to the M
column of the IWS- matrix, which proves that the response of Y({) to
an impulse of a unit which occurred s periods earlier in the \7
disturbances is given by the element Ms(i, J). Note too that,
according to decomposition (41), this response should be
interpreted as the deviation from the average projection E, Y (t)

induced by the specific impulse.

Thus we conclude that the impulse response function constitutes a
tool for assessing the explanatory power of the different sources of
variability (disturbance) included in the model, and that calculating
them for an H time series is the same as calculating the first H
term of the structural model's MA form.

Forecast error variance decomposition

An alternate way of assessing the relative importance of the
various sources of disturbance is by analysing how they contribute
to the model's forecasting error. The motivation for this analysis
can be clearly seen in (41), when one notes that its first component
represents both the contribution to the value of Y(f) of the
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disturbances that occurred between t-H+1 and t and the error of
predicting Y(f) with the information available in t-H. Analysis of
contributions to forecasting error thus provide information about
the relevant sources of variability in an H time horizon.

The specific way to analyse these contributions involves calculating
the forecast error variance for a particular horizon and isolating the
percentages of this variance attributable to each of the
disturbances contained in the model. This is the origin of the
expression "variance decomposition" which gives this procedure its
name. More specifically yet, the error variance involved in
forecasting Y with an H time horizon is the variance of the first
component of (41), which is as follows (remember that the
variance of v was normalised to the identity):

HA HA
var [Z M, v(t—s)] = > M, M, (43)

s=0

The formal exercise involves breaking down (43) into components
that represent the percentage of the forecast error variance
associated with Y; which is explained by the contribution of the
component v, , i, =1,...,nin the H time horizon. This decomposition
would not be feasible if the elements of the v vector were lagged or
contemporaneously correlated, inasmuch as the covariances
cannot be clearly attributed. Such correlations are, however, null,
which makes decomposition possible.

Indeed, given the orthogonality of the v elements, the variance of
any of their linear combinations would always be the sum of the
variances of each of the elements involved. Thus, isolating their
contribution from the total variance is simply a matter of isolating
the terms associated with each disturbance and adding up their
variances. In this particular case, the linear combination analysed
is the first component of (41), which we repeat below:

f M, v(t-s) (44)

=0

Note then that the terms of (44) which correspond to the v,
between the t-H+1 and t periods are those associated with the /"

columns of the matrices IVS, s=0,...,t-H+1. These terms can be

algebraically isolated by postmultiplying the A_rfs matrixes by the R;
instrumental matrix, defined with zeros in all their entries except in
(/) which has a one. More concretely, if the sum of all these terms
is known as P; we find that:

H-% __
P=Y MR vt-s) ; j="1..0 (45)

s=0
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where

It is clear then that forecast error (44) can be expressed as the
sum of the n components in (45). In other words, we find that:

H-1 n H-1 ___
S Mv(t-s) =) [ o M, R, v(t—s}
s=0 j=1 Ls=

(46)

This formula isolates the contribution of each of the n disturbance
components to the forecast error and provides the basis for
calculating their contribution to the variance of this error.
Specifically, given the orthogonality of the components P, j=1,...,n
the variance of the forecast error in (43) is immediately expressed

as follows:

H-1 H=1 __
P =var [2 M, v(t—s)] =Y M, M,

s=0

= varP, (47)

where
varPl..—.'Pl v Jj=1,...,n

The variance in the forecast error of Y with an H horizon is then
the #(/i,/) element, and the proportion of this variance explained by
the v, disturbance is written as P, ) Pl D, i 1, ..., n a
proportion which enables us to judge the relative importance of the
different sources of variability included in the model.
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Future projections

Unlike calculations of the impulse response function and variance
decomposition, both of which are specific to VAR methodology,
future projections are common in econometric models The term
"projection” should be understood here in a broad sense, including
both forecasting and simulation. Choosing the name "projection”
rather than the more common terms "forecasting" and "simulation”
is justified by an aim to interpret these exercises in the general
sense of projecting any aspect of the future distribution of the
variables included in the model and not just their average
dimensions. The emphasis on this theme can be said to be a
distinguishing feature of the VAR framework and we will discuss
this further in the following section. For the time being, however,
we will focus on obtaining average projections.

VAR methodology jargon distinguishes between unconditional and
conditional projections. The former refer to projections generated
by the model with the information available in the period which
defines the origin of the projection and without imposing any
condition on the future path of the model's variables. Conditional
projections, on the other hand, place certain restrictions on the
future evolution of some of the model's variables; for example, on
the future path of interest rates or wages. It can certainly be
argued that the distinction is not very clear inasmuch as the
unconditional projections are conditioned by the information
available at the time of prediction, but nevertheless this is the

terminology used.

In any case, let's go back now to (41) in order to clarify the
distinction. Formulated for the period t = T + h, h>1, it is expressed
as follows:

Y(T+h)=§ﬁ, VT +h-s)+E; Y(T+h)  (48)

§=0

Now let's assume that sample information is available up until
period T and that the forecasting horizon is h = H. Using the
information available in T, the average unconditional projection of
Y(T+H) is thus E; Y(T+H) in accordance with (48): in other words,
the result of making the forecasting error for horizon H equal to

zero.

By using (48) and the reduced form of the model (30) we can
explicitly calculate E; Y(T+H). Specifically, we can calculate the
average unconditional projection of Y(T+h) for the horizon
h = 1,...., H. According to (48), such a projection for h = 1 is E,
Y(T+1), and by referring to (30) we can immediately verify that:

E.Y(T +1) = BL)Y(T +1) + DZ(T +1)
(49)

ZB,Y(T) + BY(T=1) + ..+ B,Y(T-m+1) + DZ(T +1



Likewise, and in accordance with (48), we obtain an average
projection equal to E; Y(T+2) for h = 2. According to (30) and (49)
this is written as:

E-Y(T+2) = BEY(T +0+B,Y(T)+...+B,Y(T - m +2)+ DZ(T +2)
(50)

Continuing in the same vein for horizons h = 3,....,H, the formula is
as follows:

ExY(T +H) = BE;Y(T + H=N+...+B,E,Y(T -m +H)+ DZ(T +H)
(51)

That is to say, the average unconditional projection using
information available in 7 and horizon H is obtained by replacing
the lagged variables in the reduced form of the model with their
own unconditional projections made with the information available

inT.

Conditional projections use the same information as their
unconditional counterparts as well as information about certain
restrictions on the evolution of some of the model's variables
between the origin and the final period of the projection horizon. In
other words, there are restrictions on certain components of the
vectors Y(T+1), Y(T+2),..., Y(T+H). Generally speaking, any linear
combination of these components can be restricted, but the most
common type of restriction involves setting future values for some
of them (for example, by charting the path wages are likely to take
in the future) so that we can predict the consequences which,
according to the model, such evolution would have on the rest of

the economy.

Charting the future path of an exogenous variable is a trivial
matter. Inasmuch as the variable is determined outside the model,
all you have to do is set its value at the desired level. However,
when the variable is endogenous, which is always the case of VAR
models, things become more complicated. The variable must then
be determined in the model, which means that any restriction must
necessarily affect the sources of variability included in the model,
i.e. in terms of model disturbances. This is immediately apparent in
(48) where you can clearly see that, given the information available
in T and therefore E,Y(T+h), restricting Y(T+h) is tantamount to
restricting the forecast error with horizon h. In other words, it is the

equivalent of saying that:

iﬁs V(T +h=s)=Y(T +h)-E, Y(T +h) (52)

=0

-

(2]
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where V(T+h) represents the restricted value of Y(T+h). More

particularly, the components Y{(T+h) in the horizons h=1,...,l7 with

1 55 <H, can be restricted, thus imposing a future path on the ™
component of the Y vector.

Formula (54) reveals that placing r restrictions on the future
evolution of a VAR model's variables is the same as placing linear r
restrictions on the model's future disturbance vectors, and can

generally be written as:

V =4 (53)

rxnH nHx1 rx1

where V contains stacked disturbance vectors v(T+1), v(7+2), ...,
v(T+H). Q is appropriately defined in terms of the M, matrixes in

order to incorporate type (52) restrictions and g contains the
constants that define the linear r restrictions imposed.

The average conditional projection of the disturbances between
T+1 and T+H is thus given by the average of the vector 4

conditioned to (53), E[V| QV = q], and the average conditioned
projection of Y(T+H) is immediately obtained from (48), with h=H
and taking on both sides of the equation expectations conditional
on (53) and on the information available in 7, which results in:

E,[Y(T+H)|QV=q]=E Y(T+H) + f M, E(T+H-s)| QV =q]
s=0
(54)

In other words, the average conditional projection is the
unconditional projection adjusted by the conditional contribution of
the disturbances in the forecast time horizon.

To conclude, it should be stressed that, unlike the impulse
response function and variance decomposition, future projections
do not necessarily depend on model identification. Indeed, in the
case of unconditional projections, they are clearly independent
because, as we have already seen, they only use the statistical
variability summarised in the reduced form of the model. Nor are
conditional projections dependent when the conditions in
themselves restrict forecast error because, according to the
following expression, forecasting error is independent of

identification:

HfM'sv(T+H—s)=Hst e(T +H-s) (55)
0 s=0

©»
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where the relation between v and ¢ given in (31) and the definition
of M, given in (41) are used. Identification is only necessary when
the restriction in the forecast error involves imposing specific paths
on some component of the vector v, inasmuch as in this case the
aim is to restrict the behaviour of a specific economic agent or
sector, which means that it is necessary to first identify the source
of the economic variability of the model associated thereto.

Measuring Uncertainty

Although not explicitly mentioned, the three uses described above
involve calculations that are uncertain because they are based on
a stochastic model with estimated coefficients which in turn are
random variables. More specifically, the impulse response function
and the variance decomposition directly depend on the coefficient
matrices M of the MA form of the model, as is clearly shown by

(42) and (47), respectively. Moreover, future projections depend
directly on the coefficients of the autoregressive form (D, By) which
determine E.Y( T+H) in (48), as well as on the first component in

(48), which in turn depends on the M—s coefficients and the error
term v.

The immediate conclusion is that the impulse response function,
variance decomposition and future projections are all stochastic
magnitudes which, as such, can be characterised by using their
corresponding distribution. The description contained above was
limited to obtaining point estimates, average or otherwise, of these
magnitudes. However, as is well known, point estimates provide
very little information. Ideally, the analyst should attempt to
characterise aspects of the distribution which give the most precise
possible idea of the uncertainty surrounding his calculations. Such
a characterisation is always possible, to a greater or lesser extent,
when the model utilised includes a complete stochastic distribution
of all its variables. This is always the case with VAR models and is

discussed in the following paragraphs.

Let us begin with the impulse response function and the variance
decomposition which are a direct function of the IVS coefficient
matrices. As you will recall, according to (41) these matrices are
written as:

Mg =M, A" (56)

According to (34), the M, matrices which make up the matrix
polynomial M(L) are defined on the basis of the matrices of the

reduced form polynomial B(L):

M(L) = (1- B(L))" (57)
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Combining (56) and (57) therefore gives us the following:
M(L)=(I-B(L)"A” (58)

In other words, the matrix polynomial with IWS coefficient matrices

depends directly, not linearly, on the matrix polynomial of the
reduced form B, coefficient matrices and on matrix A with the
contemporaneous coefficients that determine the model's

identification scheme.

Formula (58) explicitly reveals the stochastic nature of the impulse
response function and variance decomposition, showing that its
distribution depends on the distributions of the coefficients in B(L)
and A. However, it also reveals that this dependency is highly
non-linear, which means that obtaining average responses and
decompositions is not the same as using the average of B(L) and A
on the right-hand side of (58). Moreover, and more generally
speaking, it is difficult to analytically obtain their distributions. This
forces the analyst to use Monte Carlo methods which enable him
to empirically characterise the distributions by drawing on the B(L)
and A distributions, both of which we assume to be normal. This is
in fact customary practice for obtaining the confidence intervals
which are typically reported in the applications of the methodology.
Note though that the procedure used is generally approximate

because it draws on B(L) and calculates M(L) conditioning on a
particular identification scheme, i.e. treating the A matrix as a
constant.

Now let us discuss future projections. As mentioned earlier, this
involves projecting any aspect of the future distribution of the
variables contained in the model and not simply its average
dimensions. A good way to proceed then is by immediately
considering the mechanism that generates future values. We will
therefore use the VAR model, taking as our reference the T period
and the error term expressed, according to (31), as a function of
the structural disturbance vector v:

Y(T+s)=BY(T+s-1)+ BYT+s-2)+..+ B,Y(T +s-m) +
+ DZ(T +8) + A™ YT +) (59)

s>1

Now observe that, given the path s = 1,2, .H it is possible to
obtain realisations of the observable vectors Y(T+1),..., Y(T+H)
drawing on the B(L), D, and A distributions and on the disturbance
vectors v(T+1),..., v(T+H) and then successively substituting the Y
values in (61). This once again leads us to use Monte Carlo
methods as a way to empirically characterise the joint distribution
of the future path of the model's variables.
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Just as in the case of responses and decompositions, it is
customary to use an approximate procedure. In this case, it tends
to ignore the sampling error associated with the coefficients, which
are treated as constants. Unconditional projections can then be
made by successively drawing on the distribution of the vector v
defined in (53) which is, according to our assumptions, a
multivariate normal with a zero mean and a covariance matrix
equal to the identity. Likewise, conditional projections are made by
drawing on the distribution of [V | QV = g] which, under the
assumption of normality we have used throughout this paper, is

normal and written as:
v]ov=q]l-nf@ @) q. /-@ @) @] o

In the case of either conditional or unconditional projections, the
analyst can not only empirically characterise the average
dimensions of future distribution, but can also obtain confidence
intervals and, more generally, calculate the probability of any event
associated with the future evolution of the variables included in the
model, which is essential given the considerable degree of
uncertainty surrounding the behaviour of the economy.
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