
Banco de España - Servicio de Estudios
Estudios Económicos, nº 64 - 2000

A BVAR
MACROECONOMETRIC

MODEL FOR THE
SPANISH ECONOMY:

METHODOLOGY
AND RESULTS

Fernando C. Ballabriga, Luis Julián
Álvarez González and Javier Jareño



Banco de España - Servicio de Estudios
Estudios Económicos, nº 64 - 2000

A BVA R
M AC RO E C O N O M E T R I C

MODEL FOR THE
S PANISH ECONOMY:

M E T H O D O L O G Y
AND RESULT S

Fe rnando C. Ballab ri ga, Luis Ju l i á n
Á l va rez González and Javier Ja reño 



In publishing this series the Banco de España seeks to disseminate
studies of interest that will help acquaint readers better

with the Spanish economy.

The analyses, opinions and findings of these papers represent
the views of their authors; they are not necessarily those

of the Banco de España.

ISBN: 84-7793-694-3

Depósito legal: M. 3639-2000

Imprenta del Banco de España

The Banco de España disseminates some of its
principal reports via INTERNET and INFOVÍA.

The respective WWW server addresses are:
http://www.bde.es and http://www.bde.inf.



ABBREVIATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FOREWORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PART ONE

METHODOLOGICAL ASPECTS

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I. VAR MODELS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I.1. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I.2. The unrestricted VAR model. . . . . . . . . . . . . . . . . . . . . . .

I.2.1. Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I.3. The Bayesian VAR model . . . . . . . . . . . . . . . . . . . . . . . . .

I.3.1. Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I.3.2. Time variation of the coefficients. . . . . . . . . . . . .

I.3.3. Prior information. . . . . . . . . . . . . . . . . . . . . . . . . . .

I.3.4. Efficiency of joint estimation. . . . . . . . . . . . . . . . .

I.3.5. Cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I.4. Identification of VAR models. . . . . . . . . . . . . . . . . . . . . . .

I.4.1. Formal description. . . . . . . . . . . . . . . . . . . . . . . . .

I.4.2. Estimation of the structural model. . . . . . . . . . . .

II. USES OF VAR MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

II.1. The impulse response function . . . . . . . . . . . . . . . . . . . .

II.2. The decomposition of the variance of the forecasting error. . .

II.3. Future projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

II.4. Measure of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

9

13

13

17

18

19

21

22

25

26

33

34

35

36

40

43

45

45

48

51

5

C O N T E N S

Pages



PART TWO

A MACROECONOMETRIC MODEL
FOR THE SPANISH ECONOMY

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

III. THE MODEL VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . .

III.1. The external sector . . . . . . . . . . . . . . . . . . . . . . . . . . . .

III.2. The monetary sector . . . . . . . . . . . . . . . . . . . . . . . . . . .

III.3. The public sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

III.4. Private sector (non-monetary) . . . . . . . . . . . . . . . . . . .

IV. THE SPECIFICATION OF THE MODEL . . . . . . . . . . . . . . . .

IV.1. Description of the structure of the model . . . . . . . . . .

IV.2. Estimation of the reduced forms . . . . . . . . . . . . . . . . .

V. THE INTERRELATIONSHIPS BETWEEN THE MODEL
VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V.1. Reseasons for the identification scheme used . . . . .

V.2. Transmission mechanism and contribution to varia-
bility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VI. SOME APPLICATIONS OF THE MODEL . . . . . . . . . . . . . . .

VI.1. Forecasting performance . . . . . . . . . . . . . . . . . . . . . . .

VI.2. The predictions of analysts and forecasts of the
BVAR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VI.3. Forecasting, uncertainty and the evaluation of targets. . . .

VI.4. Some simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VII. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LIST OF CHARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

61

61

63

64

67

69

69

76

81

81

85

93

93

98

101

106

115

117

118

121

6

Pages



ABBREVIATIONS

AR Autoregressive process

BAR BVAR model when any interaction between the series
is eliminated

BVAR Bayesian Vector Auroregressive model

CPI Consumer price index

D Public deficit

E Nominal effective exchange rate

FE1 Forecasting Error for one year

FE2 Forecasting Error for two years

FE3 Forecasting Error for three years

GDP Gross Domestic Product

GDP* Real Gross Domestic product of the OECD countries

GLS Generalised Least Squares

I Rate of interest

L Employment

M Liquid Assets held by the public

MA Moving Average process

MIN Model with prior information based on empirical
regularities

MIX Theil’s mixed estimator

OLS Ordinary Least Squares

SURE Seemingly Unrelated Regression Equations

UVAR Unrestricted VAR

VAR Vector Autorregresive model

VARMA Vector Autorregresive Moving Average model

W Compensation per employee

7



FOREWORD

Decision-making by economic agents in environments of uncertainty
requires consideration of the possible future course of relevant variables.
Such consideration is particularly important in the case of economic poli-
cymakers, since their action or failure to act influences the performance
of the economy. Within this framework of uncertainty, macroeconometric
models are an important tool for examining future prospects, allowing the
impact of different economic policy actions on the main variables to be (at
least approximately) gauged. The model presented in this paper is a fur-
ther exponent of the Banco de España’s concern to have suitable tools
for making macroeconomic forecasts that may support decision-making.

Given that the uncertainty associated with forecasts is by no means
negligible, it would seem vital to characterise it. In this respect, econo-
metric models in which all the variables are determined within the model
itself allow the uncertainty associated with predictions to be evaluated. In
this paper it has been decided to use such a macroeconomic model so
that interrelations between the main variables may be captured and, at
the same time, so that objective measures of uncertainty about the pro-
jections obtained may be obtained.

More specifically, the macroeconometric model for the Spanish econ-
omy set out in this paper is a VAR quarterly model which has been used
periodically in the Banco de España over the past three years. The first
half of the paper offers the most relevant theoretical results of the VAR
methodology, referring to the formulation, specification, estimation, identi-
fication and uses of this type of model. This methodology is used with in-
creasing frequency and has become part of the applied economist’s ha-
bitual tool-kit, essentially for two reasons. First, VAR (and particularly
BVAR) forecasting models have gained acceptance as valid prediction in-
struments. And second, much of the work seeking to interpret economic
policy has been undertaken in a structural VAR framework.

The second half presents the model, describing its elaboration and
setting out some of its uses. Different aspects of the model’s construction
are addressed here. The choice of variables is thus reasoned, and the
prior information considered, the goodness-of-fit criterion selected and
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the estimation method followed are all detailed. The results obtained un-
der this model are set against alternative models, making for a more ap-
propriate assessment of its characteristics. The emergence of new re-
quirements as regards the monitoring of the Spanish economy (arising
from the alteration of the monetary policy framework or from the pre-req-
uisites for EMU entry) has prompted the creation of instruments based on
this model, with the aim of meeting these requirements. The examination
of some of these instruments concludes the paper.

For an empirical piece of work used over an extended period, credit
must be given to many people. The unwavering support of José María
Bonilla and José Viñals is particularly to be acknowledged. In addition, Pi-
lar L’Hotellerie, José Manuel Marqués, María de los Llanos Matea and
Javier Vallés took the time to read an initial version of this paper, on
which they made various comments and suggestions. Likewise, we wish
to express our gratitude to all those in the Banco de España Research
Department or from other institutions who, at one time or another, con-
veyed their comments on a version of this model or its results.
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PART ONE

METHODOLOGICAL ASPECTS



INTRODUCTION

The Cowles Commission for economic research was headquartered
in Chicago from 1939 to 1955. During this period, and especially in the
1940s, its members laid the foundations for what has been called tradi-
tional econometrics. Specifically, the contribution of this Commission to
econometrics was twofold: it advocated the use of statistical inference in
economics, and it developed simultaneous-equation models to an opera-
tional state, addressing their identification, estimation and validation.

For three decades, the Commission’s econometric principles defined
the profession’s framework of consensus and monopolised econometric
theory and practice. These principles may be summarised in two key
points: 1) the imposition of restrictions in the form of nil values for coeffi-
cients (for example, the prior division between endogenous and exoge-
nous variables); and 2) econometric specification based on economic
theory. Specifically in the macroeconomic sphere, Klein (1947) marks the
starting point for the construction of macroeconometric models of poten-
tial use in economic policy decision-making processes. The size of these
models got progressively bigger, and they were systematically used to
quantify the macroeconomic impact of various scenarios defined in terms
of alternative paths for the exogenous variables of the model.

In the second half of the 1970s, two authors each wrote a classical ar-
ticle questioning the uses and principles of construction basic to traditional
macroeconometric models: Lucas (1976) and Sims (1980). Both critiques
of traditional modelling strategy were so profound that, according to these
authors, they warranted the abandonment of such a strategy and the initi-
ation of alternative ones correcting what they considered to be unaccept-
able aspects of the traditional methodology. In effect, these articles were
very influential in the United States, giving rise to the start of the research
programmes advocated by their authors. Among these research pro-
grammes, the present paper focuses on that advanced by Sims ( 1 ) .

Sims’ proposal departed from a direct critique of the construction
methods of traditional models. This may be outlined as follows.
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The validity of the restrictions used to obtain a structural interpretation
is crucial if it is sought to defend the existence of a connection between
reality and the model used to represent it. Sims considered the restric-
tions used to identify traditional macroeconometric models to be mostly
devoid of credibility (2). Economic theory did not justify them. In reality,
his argument continued, theories capable of providing unequivocal re-
strictions were scant in comparison with the number of variables and
equations usually included in traditional models. In particular, the alleged
exogeneity of many of the variables was more fictitious than real.

By way of illustration, consider the following econometric model:

Y1t = F (Y1t, Y1t – 1, Y1t – 2, … , Y2t, Y2t – 1, Y2t – 2, … ; δF) + u1t
[In.1]

Y2t = G (Y2t, Y2t – 1, Y2t – 2, … , Y1t, Y1t – 1, Y1t – 2, … ; δG) + u2t

where t indicates time, u1, and u2 are the disturbances of the model,
δF and δG are vectors of parameters and, for convenience, the model vari-
ables have been separated into a vector Y1, representing the private sec-
tor, and another, Y2, the vector of the economic policymakers’ control
variables. This model has an identification failing, as it is not possible to
establish which of the two equations corresponds to the behaviour of the
private sector and which to that of the economic policymakers. A com-
mon practice in traditional modelling to resolve this has been to treat the
control vector as exogenous; i.e. to reduce [In.1] to the following restrict-
ed specification:

Y1t = F (Y1t, Y1t – 1, Y1t – 2, … , Y2t, Y2t – 1, Y2t – 2, … ; δF) + u1t
[In.2]

Y2t = G (Y2t, Y2t – 1, Y2t – 2, … ; δG) + u2t

where the vector Y1 has been eliminated from the equation G, and the
assumption is made that the disturbances u1t and u2t are orthogonal (3).
Admittedly, the exogeneity of Y2 ensures the identification of the F and G
equation blocks, but what is very likely involved here is an unwarranted
assumption since, possibly, those responsible for the control of Y2 r e-
spond to the private-sector events reflected in the path of Y1.

Sims argues that when the identification of a model resides on such
fragile bases, its implications about the underlying interrelations in the
economy can be considered only with difficulty, thereby disqualifying it as
an instrument of empirical analysis.

The alternative methodology proposed in Sims (1980) was to specify
and estimate macroeconometric models not incorporating prior controver-
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sial restrictions (4). The proposal actually considered was to specify mini-
mally restricted models in which all the variables of a clear economic con-
tent were treated endogenously. The resulting models are known as vec-
tor autoregressions (VAR) (5). Imposing in [In.1] the restriction that no el-
ements contemporaneous to the variables situated in the right hand side
of equation may feature in the left hand side, we have:

Y1t = F (Y1t – 1, Y1t – 2, … , Y2t – 1, Y2t – 2, … ; βF) + ε1t
[In.3]

Y2t = G (Y2t – 1, Y2t – 2, … , Y1t – 1, Y1t – 2, … ; βG) + ε2t

Along with the assumptions that the functions F(·) and G(·) are linear
and that the vector of stochastic disturbances (ε1, ε2) is white noise, [In.3]
would be the VAR representation of the endogenous variables vector
(Y1,Y2), as is made explicit in the following chapter.

The implementation of Sims’ methodological proposal soon encoun-
tered obstacles that ultimately became sources of discussion and re-
search in the 1980s and 1990s. The first was the extensive parameterisa-
tion of VAR models. The second was the absence of a specific identifica-
tion proposal, so that VAR models were reduced-form models devoid of
economic interpretation. Currently, both the problem of degrees of free-
dom and the problem of identification have been resolved relatively satis-
factorily, which has made for a readier dissemination of the VAR methods
philosophy. This philosophy departs from the acknowledgement that
there is extensive uncertainty about the true economic data-generating
mechanism. The immediate consequence of this acknowledgement is
that an appropriate modelling strategy should enable such uncertainty to
be explicitly incorporated into the model specification process, so as to al-
low its systematic and objective treatment. And it is precisely this idea
which warrants insistence on the parsimony of the restrictions, so that the
extraction of the relevant empirical regularities may be tackled by means
of an as objective as possible reading of the economic data.

This idea permeates the methods and uses described in the rest of
this methodological section (6).
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I

VAR MODELS

I.1. Formulation

In its most common formulation, the autoregressive representation of
a vectorial stochastic process Y of order n is, for all of t, as follows:

Yt = B(L)Yt + DZt + εt
[I.1]

εt ~ iid (0, Σ)

where B(L) = Σm
s = 0 BsL

s is a matrix polynomial in the lag operator L
(such that LSYt = Y t - s), with Bs a matrix of order n x n and B0 the null
matrix, i.e. there are no contemporaneous terms, m denotes the num-
ber of lags included in each of the endogenous n components of the
vector Y, Z is a vector with d deterministic components and D is a coef-
ficient matrix of order n x d. Lastly, ε is a white noise vectorial process
of size n, with a zero mean and a covariance matrix Σ. The name «vec-
tor autoregression» arises as a natural one for model [I.1] when it is
seen that it relates a vector of variables to its own past. In fact, building
on [I.1]:

Yt = B1Yt – 1 + B2Yt – 2 + … + BmYt – m + DZt + εt [I.2]

Alternatively, the autoregressive representation of the stochastic vec-
tor Y can be formulated in the following terms:

Yt = Xt – 1β + εt [I.3]
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where

Each block of zeros in Xt-1 is a vector of order k, with k being equal to
nm+d, the same as the sub-vectors ßi, i=1, ..., n, which contain stacked
the ith rows of the coefficient matrices Bs, s=1, ..., m, and D in the formu-
lation [I.1]. The sign «´» denotes transposition.

As instruments representing stochastic processes, VAR models pro-
vide a very general theoretical framework. Granger and Newbold (1986)
point out that if there is no restriction on the number of lags (m, which
may be infinite) and the possibility that the model coefficients may de-
pend on t is accepted, any stochastic process (whether stationary or not)
may be approximated by means of an autoregressive representation (1).
This generality, in addition to being in keeping with the relatively unre-
strictive spirit of the methodology, converts VAR models into attractive
starting points for econometric modelling and into a reference framework
that reveals the restrictions actually incorporated into alternative models,
since any simultaneous-equation or time-series econometric model may
be expressed in the reduced form [I.1]-[I.3].

I.2. The unrestricted VAR model

The UVAR (Unrestricted Vector AutoRegression) model is obtained,
given a number of lags, with the representation [I.1]. The qualifying adjec-

=Xt – 1
(k × 1)

 

Yt – 1

Yt – 2

·

·

·

Yt – m

Zt

   ;   =β
(nk × 1)

 

β1

β2

·

·

·

βn

=Xt – 1
(n × nk)

 

X′t – 1 0′ … 0′

0′ X′t – 1 … 0′

… … … …

0′ 0′ … X′t – 1
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tive «unrestricted» reflects the fact that the UVAR model includes a bare
minimum of restrictions that are needed for it to be operational: the selec-
tion of a set of n variables, the specification of the (linear) algebraic rela-
tionship connecting them and a set of k parameters that allows the suffi-
cient degree of freedom to be had to generate acceptably appropriate
statistical estimators.

The UVAR model has been that predominantly used in VAR method-
ology applications. There are probably two reasons for this: first, its broad
generality as a representative instrument of stochastic processes; and
further, the fact that it can be readily estimated via methods with appropri-
ate statistical properties, such as the ordinary least squares (OLS)
method, which is examined below (2).

I.2.1. Estimation

Let us take as a reference the linear regression framework, whose
notation has been used in the formulation [I.3]. As is well known, the OLS
estimator has desirable properties in this framework. Specifically, this es-
timator is consistent and has a normal asymptotic distribution, being the
most efficient linear unbiased estimator. The key question is whether
these properties hold in the UVAR framework.

As a response to this question, note that one difference between the
UVAR and linear regression frameworks lies in the stochastic nature of
the regressors in the first case, and in their deterministic nature in the
second. The deterministic nature of the explanatory variables in the linear
regression model is that which, on one hand, enables the OLS estimators
to be unbiased, the Gauss-Markov theorem being applicable, and, on the
other, it facilitates the obtention of its asymptotic properties.

When the regressors are stochastic, more possibilities arise, and it is
necessary to distinguish between their stationary or non-stationary nature
and consider their relationship to the model’s error component. In particu-
lar, if the variables of the model considered are stationary and the regres-
sors statistically independent of the error component, the properties of
the OLS estimator in the deterministic regression framework, conditional
upon the sample observations, will hold.

Admittedly, the variables included in the UVAR model may be station-
ary; however, its regressors are not independent of the error component.
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Specifically, the regressors in a UVAR model will be correlated with
lagged disturbances. In formal terms:

E [ε′t – sXt – 1] ≠ 0, s ≥ 2 [I.4]

Although this feature means that certain properties cease to hold, it is
not irremediable. In fact, it is true that: a) the disturbance vector of the
UVAR model is, by definition, a succession of independent random vec-
tors, and b) there is no correlation between the current value of the distur-
bance and the regressors of the model; i.e.

E [ε′tXt – 1] = 0 [I.5]

Subject to certain regularity conditions, conditions a) and b) are suffi-
cient for applying the Mann-Wald and Cramèr theorems [see, for exam-
ple, Harvey (1981)] which, combined, allow to show that, in a model of
stationary variables with stochastic regressors, the OLS estimator retains
the same asymptotic properties as in the linear regression framework. A
stationary UVAR model can, therefore, be suitably estimated via the OLS
method.

In the non-stationary framework, the presence of unit roots and of
possible cointegration relationships between the components of the vec-
tor Y does not result in a lessening of the asymptotic properties of the
OLS estimator of the UVAR model. Sims, Stock and Watson (1990) show
that, if the potential cointegration restrictions existing are not taken into
account and the model is estimated in levels, this estimator is consistent;
and Park and Phillips (1989) and Ahn and Reinsel (1990) demonstrate
that it has the same asymptotic properties as the maximum likelihood es-
timator that incorporates the cointegration restrictions.

A further question arising from a UVAR model estimation process is
that of whether the application of the OLS method to each of the n equa-
tions of the system involves a loss of efficiency in relation to the alterna-
tive of estimating the n equations jointly by generalised least squares
(GLS).

Regression theory provides the appropriate framework for responding
to this question; more specifically, the valid reference framework is in this
case that of seemingly unrelated regressions (SURE). Two standard re-
sults of the SURE framework are that GLS estimators and OLS estima-
tors are the same in the absence of contemporaneous correlation be-
tween the error components (Σ is diagonal in our notation) or when the
set of regressors is the same in the n equations. In either of these two
cases, joint estimation does not provide gains in terms of efficiency [see
Harvey (1981), for instance].
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In a UVAR model, Σ is not usually diagonal, yet all the equations
have, by contrast, exactly the same regressors. Under this condition it
holds that the OLS and GLS estimators coincide. This result justifies the
habitual practice of estimating UVAR systems following a single-equation
procedure.

I.3. The Bayesian VAR model

As can be seen in expressions [I.1] and [I.3], the generality of the au-
toregressive representation is based on its extensive parameterisation.
But such generosity in the specification may be excessive, since the
number of coefficients grows as a quadratic function of the number of
variables included and proportionately to the number of lags of each vari-
able, according to the expression n(nm+d).

The UVAR model described in the preceding section seeks to exploit
directly the generality of the autoregressive representation, without any
type of additional restriction coming to bear on the lag structure once m is
selected. As a result, the model tends to be heavily parameterised. Note,
for example, that a UVAR model with five endogenous variables, four
lags and a constant term per equation, will contain a total of 105 coeffi-
cients.

Heavily parameterised models are not, however, those most suitable
for the empirical analysis of macroeconomic data, owing to the fact that
macroeconomic information tends to be scant and to contain a high pro-
portion of random variability. The conjunction of a heavily parameterised
model with scant sample information that is overly random, along with a
method that minimises the distance to the data, causes an overfit; i.e. the
phenomenon whereby the resulting model reflects, fundamentally, ran-
dom (noise) rather than systematic (signal) empirical variability.

Against this background, analysts of macroeconomic series wishing
to resort to the UVAR framework have to specify small models. Indeed, it
is not usual to find UVAR applications with more than five or six variables.
This is a truly paradoxical obstacle: as earlier indicated, VAR methodolo-
gy seeks to be an alternative to traditional econometric modelling by
avoiding controversial exclusions, but the UVAR framework is not really
an operational alternative to traditional macroeconometric models owing
to the fact that its generous parameterisation rapidly exhausts the de-
grees of freedom available, even in small-sized models, the result being
models suffering from over-parameterisation.
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The Bayesian dimension of VAR methodology was proposed by Lit-
terman (1980) and Doan, Litterman and Sims (1984), with the aim of of-
fering a solution to the problem of overfit for UVAR models other than that
involving resorting to economic theory and statistical tests as sources of
exclusion restrictions, an habitual solution in simultaneous-equation
econometric models. In keeping with the relatively unrestrictive spirit of
the methodology, it was sought to avoid the influence of random variabili-
ty in the estimation without having to address the choice of  model should
retain the generality of the autoregressive representation.

The Bayesian solution may be viewed as natural on seeing how un-
satisfactory the need to take decisions on exclusion or inclusion is in situ-
ations where the analyst never knows for sure beforehand whether the
value of a specific coefficient is zero, and where knowledge of the value
of the model coefficients is not totally absent, as is habitually the case in
econometric analysis. The Bayesian perspective enables such exclusions
to be avoided and allows the information available to be expressed more
realistically through the allocation of probability distributions to the mod-
el’s different coefficients.

More specifically, the above-mentioned authors proposed comple-
menting the autoregressive representation with the specification of a prior
distribution of the coefficients which, by not being diffuse (whereby any
value would have the same probability) nor placing the entire weight on a
single value, would offer a reasonable range of uncertainty and could be
modified by the sample information when both sources of information
were to differ substantially. While the prior information is not excessively
diffuse, it will only foreseeably be altered by the systematic variability, not
the random variability, thus lowering the risk of overfit.

The implementation of this idea involves formally specifying a proba-
bility distribution for the coefficient vector ß and combining it with the rep-
resentation [I.1]-[I.3]. The resulting model of this combination is called
Bayesian Vector AutoRegression (BVAR).

I.3.1. Estimation

Adopting the Bayesian approach, ß is a random vector and not a vec-
tor of parameters. This point should be underscored. Traditional econo-
metrics or, generally speaking, non-Bayesian econometrics departs from
the assumption of the existence of a vector of genuine parameters. How-
ever, Bayesian econometrics does not consider the model coefficients as
parameters but as random variables which, as such, have a distribution
function. In this respect, characterising the stochastic behaviour of Yt con-
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ditional upon Xt – 1 requires explicit assumptions, both about β and εt. In
the BVAR framework, the following assumptions are usual:

β_Xt – 1 ~ N (βt –1 , Ωt – 1)
[I.6]

εt_Xt – 1 ~ N (0, Σ)

β and εt. are independent random variables.

The first two assumptions show that, conditional upon the information
available at the start of period t, the coefficient vector β and the distur-
bance vector ε have a multivariate normal distribution, with the mean and
variance specified. The assumption of normality is not unavoidable, but it
is desirable. That is to say, what is really sought is a flexible model to in-
corporate prior information into the analysis, and the assumption of nor-
mality enables the appropriate properties of the Gaussian framework to
be used.

Let us start by pointing out that, from the Bayesian standpoint, the
problem of estimating this econometric model is confined to the problem
of applying the Bayes theorem to obtain for all t the posterior distribution
of [β_Xt – 1, Yt] on the basis of the prior distribution of [β_Xt – 1] (3) in [I.6]
and of the sample information for moment t. We shall focus first on ob-
taining the posterior distribution, discussing thereafter the selection of the
prior information (4).

Theil’s mixed estimation technique [Theil (1971)] provides a suitable
framework for obtaining the posterior distribution of the coefficient vector
by allowing, first, the different sources of information available (prior and
sample in this case) to be combined and, further, for it to be interpretable
in Bayesian terms (5). To apply the technique, we first need to express
our prior information in the form of dummy observations. Note, specifical-
ly, that the distribution in the first line of the expression [I.6] can be ex-
pressed as follows:

β =βt – 1 + ηt – 1 [I.7]

where

ηt – 1 ~ N (0, Ωt – 1)
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(3) Strictly, this distribution includes sample information to the moment t-1.
(4) From a strictly Bayesian viewpoint, Σ should also be part of the estimation problem;

i.e. the problem should be that of obtaining a posterior distribution for [β, Σ _ Xt – 1, Yt] on the
basis of a prior distribution for [β, Σ _ Xt – 1 ]. The usual procedure in the literature on BVAR
models has, however, been that of making conditional upon Σ and focusing on the coeffi-
cient vector β. We shall confine ourselves to this framework in this paper.

(5) The posterior distribution may be obtained in alternative ways. For instance, in Bal-
labriga (1991, 1997) the updating scheme provided by the Kalman filter is used.



As stated, expression [I.7] comprises the set of prior information on
the coefficient vector β. The second information set is given by [I.3],
which defines the connection between the vector of observables Yt and β.
and which, for convenience, is reproduced below:

Yt = Xt – 1β + εt [I.8]

The disturbance vector εt is characterised by the second line of ex-
pression [I.6] and is, according to the third line of the same expression,
independent of the disturbance vector ηt – 1 in [I.7].

The stochastic linear restrictions [I.7] and [I.8] contain the information
on β available in t, and they may be combined as follows:

[I.9]

where

Theil’s mixed estimator β, βt
MIX, is obtained applying the GLS method

to the system [I.9]. The estimator is as follows:

βt
MIX = [Ω–1

t – 1 + X′t – 1Σ–1Xt – 1]–1 [Ω–1
t – 1βt – 1 + X′t – 1Σ–1Yt]

[I.10]
Cov (βt

MIX) = [Ω–1
t – 1 + X′t – 1Σ–1Xt – 1]–1

The question now is what is the connection between the estimators in
[I.10] and the posterior distribution of [β_Xt – 1, Y t] . And the reply is ob-
tained by means of the Bayesian interpretation of Theil’s mixed estima-
tion technique: if [I.7], i.e. the prior information specified, is interpreted as
a second sample independent of the sample of observables [Yt, Xt – 1 ] in
[I.8]. With the prior information included in the form of a dummy sample in
[I.9], we proceed as though our information on β were diffuse. Combining
the likelihood of the model [I.9] with the diffuse information of β then gives
the posterior distribution, which proves to be approximately normal with
mean and variance given by [I.10] [see Theil (1971)]. That is:

[β_Xt – 1, Yt] ~ N (βt, Ωt) [I.11]

where

βt = βt
MIX

Ωt = Cov (βt
MIX)

ηt – 1

ε t
 ~ N 0

0
, 

Ω t – 1 0

0 Σ

βt – 1

Yt

 = 
I

Xt – 1

 β + 
–ηt – 1

ε t
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It may thus be concluded that, conditional upon Σ, [I.10] is a Bayesian
estimator updating procedure. If it is used iteratively for all the sample ob-
servations, βT and ΩT, , may be obtained, thus completing the estimation
procedure from the Bayesian perspective.

I.3.2. Time variation of the coefficients

BVAR methodology has so far been described under the assumption
that the coefficient vector β has an invariant distribution over time which
successive sample observations allow to be estimated with progressively
greater accuracy. Habitually, however, analysts may believe there to be
non-linear behaviour in their sample. This belief may be explicitly includ-
ed in the model, accepting as part of the set of prior information the pos-
sibility that the distribution of the coefficient vector β may alter over time.

Time variation is a relatively typical feature of BVAR models which
makes their specification more flexible and provides a useful mechanism
for detecting potential non-linearities in the sample without having explic-
itly to model the source of the change.

Although other parameterisations are possible, the most usual way of
including time variation in the BVAR framework is by specifying the law of
motion of β as a first-order autoregressive process. This law of motion
usually suffices to detect potential shifts in the linear structure of the mod-
el, further enabling the analysis to be maintained within the Gaussian
framework. Indeed, the framework described in the previous section may
be readily generalised so as to include this type of time variation. Specifi-
cally, the coefficient vector of the model now takes the following form:

[I.12]

where the added time index indicates that the stochastic properties of
the vector depend on time. In this context the coefficient vector is a
stochastic process with a distribution that is variable over time. As a con-
sequence, the characterisation of the stochastic behaviour of Yt condition-
al upon Xt - 1 requires broadening the set of assumptions in [I.6] to take

βt = 

β1t

β2t

·

·

·

βnt
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this time dependence into account. The set of assumptions used is as fol-
lows:

βt – 1_Xt – 1 ~ N (βt – 1, Ωt – 1)

εt_Xt – 1 ~ N (0, Σ)

βt = Sβt – 1 + ut [I.13]

ut_Xt – 1 ~ N (0, ϕ)

βt – 1, ut and εt independent

where S and ϕ are nk-order squared matrices whose structure will be
specified later.

The prior distribution of [βt – 1_Xt – 1] (i.e. the equivalent to the first of
the assumptions of the BVAR framework represented by the first equa-
tion of [I.6]) is now obtained combining the first three lines of [I.13], giving:

[βt – 1_Xt – 1] ~ N (β∗
t – 1, Ω∗

t – 1) [1.14]

where

β∗
t – 1 = Sβt – 1

Ω∗
t – 1 = SΩt – 1S′ + ϕ

The analysis of the foregoing section is thus valid with the simple re-
placement, for the whole of t, of βt – 1 and Ωt – 1 by β∗

t – 1 y Ω∗
t – 1, respec-

tively, giving rise to the following updating scheme:

βMIXt = [Ωt – 1
∗ –1 + X′t – 1Σ–1Xt – 1]–1 [Ωt – 1

∗ –1β∗
t – 1 + X′t – 1Σ–1Yt]

[I.15]
Cov (βMIXt) = [Ωt – 1

∗ –1 + X′t – 1Σ–1Xt – 1]–1

Note, finally, that the framework with time variation generates as a
particular case the framework without time variation when S is the identity
and ϕ the null matrix, in which case the set of assumptions in [I.13] is
identical to that of [I.6], and the updating schemes [I.10] and [I.15] coin-
cide.

I.3.3. Prior information

As mentioned in reference to [I.10], for the updating scheme of the
mixed estimator expressed in [I.15] to be operational, it is necessary in
the first sample period (t=1) to have an initial specification for the matrix Σ
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and the prior distribution relating to [I.14], which by extension requires
specifying the matrices S, S, ϕ y Ω0, along with the vector β0. This initial
specification allows the model’s set of prior information to be completed.

The selection of the prior information is, undoubtedly, the most dis-
tinctive aspect of the specification process of BVAR models. In principle,
this information may adopt different forms and be from various sources,
hence its attractiveness. However, in the framework of BVAR methodolo-
gy the main aim of the information is, as mentioned, to reduce the risk of
overfit without diminishing the generality of the representation of the mod-
el. What is then involved here is purely instrumental information which, as
such, does not seek to be definite on average but to offer a realistic range
of data-generating mechanisms among which analysts may select that
most appropriate for explaining the variability of their sample data.

In keeping with its instrumental nature, the usual prior information in
the BVAR framework is of a statistical-empirical origin, lacking in eco-
nomic content (6). The intention of such economic «neutrality» from the
outset is that the resulting specification should be accepted by a broad
range of analysts, irrespective of the fact that they may not concur in their
view of what the true structure of the economy analysed is.

The essential part of the prior information is made up of three empiri-
cal regularities that are characteristic of time series statistical analysis:

1) The assumption that the best forecast of the future value of a se-
ries is its current value (the so-called random walk assumption)
satisfactorily approximates the behaviour of many economic se-
ries.

2) Recent lagged values of a series usually contain more informa-
tion on its current value than lagged values more distant in time.

3) The lagged values of a series contain more information on its
current value than the lagged values of other variables.

As may be seen from the formal description of the model given in the
preceding paragraphs of this section, and in particular from the prior dis-
tribution expressed in [I.14], the mechanism selected for including the pri-
or information consists of specifying a multivariate normal distribution.
The aim is that the prior information should contain regularities 1) to 3),
and the assumption of normality allows them to be included, in addition to
providing the analytically desirable Gaussian framework. The most direct
means of proceeding is to define the prior distribution expressed in [I.14]
in t=0 as a set of independent normal nk distributions, one for each coef-
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ficient of the model, parameterised individually in line with regularities 1)
to 3). However, this individualised parameterisation strategy would lead
to an overfit, which is precisely what it is sought to avoid.

An alternative strategy involves maintaining the independence as-
sumption among the prior nk distributions, but adding a functional depen-
dence among them all and a limited set of parameters that allow their ba-
sic dimensions to be controlled so that they reflect regularities 1) to 3).
These parameters are known as hyperparameters in BVAR methodology
terminology so as to distinguish them from the term «parameter» used in
classical econometrics.

Chart I.1 offers the prior density function for an equation representa-
tive of system [I.3] and illustrates how regularities 1) to 3) are included:

— Feature 1) is incorporated specifying a mean equal (or close) to
one for the distribution of the coefficient of the first own lag, and
equal to zero for the other coefficients.

— Regularity 2) is reflected in the reduction of the variance of the dis-
tributions as the lag increases; hence, the more distant the lag is,
the greater the probability that its coefficient is zero.

— Finally, characteristic 3) is introduced assigning greater variance to
the own lags (row 1 in the chart) than to the lags of other variables
(row 2 in the chart), making it more probable that the latter are
zero.

As depicted, Chart I.1 also gives some idea of the nature of the set
of control hyperparameters. Thus, one of the hyperparameters usually
controls the mean of the first own lag coefficient. A second hyperparam-
eter controls the variance of the distributions of the own lag coefficients,
and a third that of the coefficients of the lags of other variables. A fourth
hyperparameter controls the speed at which the variance of the coeffi-
cients (both own and of other variables) diminishes as the lag in ques-
tion increases. Further, the initial assumption is that the analyst does
not have specific information about the deterministic component,
whereby the prior distribution for its coefficient is diffuse (row 3 of the
c h a r t ) .

An additional hyperparameter is usually specified to control the over-
all degree of uncertainty with which the model’s coefficients are incorpo-
rated. This aspect is crucial for determining the relative weight assigned
to the prior and sample information, respectively. In terms of Chart I.1, an
increase in this hyperparameter would cause a generalised increase in
the variance of the distributions, such that the relative weight of the prior
information would be reduced. At the limit, if this hyperparameter took a
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very high value, the prior distributions of all the coefficients would be dif-
fuse (in terms of Chart I.1 all the distributions would be similar to that pre-
sented for the deterministic component in row 3), the prior information
would have no weight and, therefore, any Bayesian element would be
eliminated.

Admittedly, in specific applications (such as that presented in the sec-
ond half of this work) the analyst may wish to control other dimensions of
the prior information that he deems relevant for the case at hand (e.g. the
seasonal or the long-term dimension), but the dimensions described are
common to all the applications of BVAR methodology.

Returning to the formal description of the model, these ideas are out-
lined explicitly below in terms of the elements defining the prior distribu-
tion of the coefficients expressed in [I.14].
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Starting with the vector β0,its specification is as follows:

[I.16]

where the hyperparameter τ1 occupies the i th position and represents the
prior mean of the coefficient of the first own lag of the dependent variable
in equation i. The coefficients for the remaining lags, whether own or not,
have a prior mean equal to zero.

As indicated, the prior information usually departs from the assump-
tion of independence among the components ofβ0, i.e. from a diagonal
Ω0 matrix, whose entries of the main diagonal (ωhh) will be given by one
of the following prior variances:

— For the coefficients associated with the own lags:

[I.17]

— For the coefficients associated with the lags of the rest of the vari-
ables:

[I.18]

— For the coefficients associated with the lags of the deterministic
variables:

[I.19]
σijs

2
 = τ2 τ3 σεi

2
;    i = 1, ..., n;    s = 0

j = n + 1, ..., n + d

σijs
2

 = 
τ2 τ3

s
τ4

 
σεi

2

σεj

2
 ;    i = 1, ..., n;    i ≠ j;    s = 1, ..., m

j = 1, ..., n

σijs
2

 = 
τ2

s
τ4

 σεi

2
;    i = 1, ..., n;    i = j;    s = 1, ..., m

j = 1, ..., n

βi0 = 

0

·

·

·

τ1

·

·

·

0

;    i = 1, 2, … , n
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where σ2
ijs is the prior variance for the coefficient relating to lag s of vari-

able j in equation i. Thus, for example, σ2
231 would be the prior variance of

the first lag coefficient of the third variable of the system in the second
equation.

The location of these variances in Ω0 is given by:

ωhh = σ2
ijs [I.20]

In these prior variances, τ2 controls the overall degree of uncertainty
with which the prior information is incorporated into the model estimation
process; as τ2 grows, the distribution is less informative, becoming diffuse
at the limit. τ3 controls the degree of uncertainty of the lags of other vari-
ables in relation to that of the own lags; at the limit, when τ3 is equal to
zero, the prior information defines a model made up of n AR(m) univari-
ate processes. τ4 controls the speed at which the variance diminishes
with the lag, and τ5 the relative uncertainty of the deterministic compo-
nent. Finally, σ2

εi
and σ2

εi
represent the entries of the main diagonal of Σ,

and are a measure of the size of the fluctuations of the variables i and j.
Their role in the prior information is to allow comparison of the degree of
uncertainty with the scale of the fluctuations.

Although the hyperparameterisation of Σ, possible, the usual practice
has, as indicated, been to make conditional upon Σ, estimating it on the
basis of the residuals arising in AR(m) univariate models estimated
by OLS.

The time variation of the model remains to be characterised. This resides
on the matrices S and ϕ, and its representative specification is as follows:

S = diag (S1, ..., Sn)

Si = diag (τ6);    i = 1, 2, ..., n

ϕ = diag (J1, ..., Jn) Ω0

[I.21]

Ji = diag (τ7);    i = 1, 2, ..., n

where diag defines diagonal matrices by blocks whose entries of the
main diagonal are those included in brackets, Si and J i are kxk matrices,
τ6 controls the coefficients of the first-order autoregressive process which
characterises the law of motion of the coefficient vector β and τ7 controls
the degree of time variance actually incorporated into the model. Note, in
particular, that τ6 =1 and τ7 =0 give the version of the model without time
variation. Note also that time variation is proportionate to the matrix of pri -

where h = (i – 1) [nm + d] + n(s – 1) + j si   j ≤ n
(i – 1) [nm + d] + nm + (j – n) si   j > n
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or variance of the vector β0, which allows for relative evaluation of the de-
gree of time variation.

At this point it will have become clear that the specification of the prior
information described above is incomplete in the sense that it depends on
an unknown hyperparameters vector τ. From a strictly Bayesian stand-
point, the prior information should not contain unknown (hyper)parameters.
Indeed, a strict Bayesian implementation would require the specification of
distributions for hyperparameters and integration over the relevant range to
obtain the posterior distribution. However, the usual practice has involved
two approximative procedures in BVAR methodology applications.

The first consists of using the posterior distribution associated with
the particular numerical value of the vector τ which reflects directly the
empirical regularities 1) to 3) described earlier. For example:

[I.22]

This procedure was characteristic in the initial applications of the
methodology, and is formally tantamount to assuming that the vector τ is a
degenerate random vector with a mass of one in the specific choice [I.22].

The second procedure consists of using the posterior distribution as-
sociated with a specific numerical value selected in accordance with a
goodness-of-fit criterion. Two commonly used criteria are the minimisa-
tion of a loss function defined in terms of predictive power statistics and
the maximisation of the model’s likelihood function.

Regarding this latter criterion, note that, given the assumption of nor-
mality, the model’s likelihood is as follows:

[I.23]

where

Ψt – 1 = Xt – 1 Ω*
t – 1 X′t – 1 + Σ

L Yt_Xt – 1, Σ, τ∏
t = 1

T

 = (2 π)
–T/2

 _Ψ t – 1_
–1/2∏

t = 1

T

exp –1
2

 Yt – X t – 1 βt – 1
* ′ Ψ t – 1

–1
 Yt – X t – 1 βt – 1

*

τ = 

1

0,2

0,5

1

10
6

1

0,001
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The approximative criterion based on the likelihood function thus con-
sists of maximising [I.23] with respect to τ and obtaining the posterior dis-
tribution associated with this optimum vector. The Bayesian justification
of this procedure is that it can provide a reasonable approximation to the
complete process of integration. Specifically, if a diffuse prior distribution
is assigned to τ the posterior distribution of the coefficient vector β will be
a weighted mean of the posterior distributions associated with each spe-
cific value of τ with weights given by the value of the likelihood in that
specific value. Thus, by choosing the posterior distribution associated
with the value of τ that maximises [I.23], we are in fact using the posterior
distribution with most weight in the integration process. When the values
of τ with high likelihood give rise to similar associated posterior distribu-
tions, the procedure approximates reasonably to the true posterior distri-
bution.

To conclude this section, emphasis should be placed on the flexibility
provided by the Bayesian dimension of VAR methodology, in the sense of
allowing confrontation with the sample information of a broad parametral
range that provides, in turn, a broad representative generality from the
statistical standpoint: from the univariate AR model to the VAR model,
this latter model being obtained as a particular case of the BVAR frame-
work when the prior information selected is diffuse, i.e. when τ2 tends to
infinity. In this case, Ω0

* –1 tends to zero and, as can be clearly perceived
in the scheme updating the mixed estimator presented in [I.15], the
scheme for updating the prior information generates the OLS estimate of
the model. The univariate AR model would be obtained by specifying dif-
fuse prior information as in the UVAR case and, further, by making the
hyperparameter that controls the degree of uncertainty of the lags of the
other τ3 variables equal to zero.

I.3.4. Efficiency of joint estimation

In the case of the UVAR model it was concluded that the single-equa-
tion estimate is efficient because all the equations have the same ex-
planatory variables. It seems advisable to question whether this result
holds for BVAR models.

The fact the Theil mixed technique has been used as an estimation
method means fresh resort can be made to the SURE framework, verify-
ing that the response to this enquiry is negative. Specifically, it is a ques-
tion of checking whether, with the incorporation of the prior information,
the characteristic whereby the set of explanatory variables is the same in
all the equations of the system holds or not. This can be done returning to
expression [I.9], which combines the prior and the sample information
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and in which I and Xt-1 make up the set of explanatory variables. General-
ly, I ≠ Xt – 1, whereby the BVAR model contains two blocks of equations
whose explanatory variables differ and, therefore, the result of the UVAR
framework is not applicable.

In fact, the condition for the single-equation estimate to be efficient in
the BVAR framework is that the prior variance of the coefficients should
be a multiple of the residual variance in each of the equations (7). This
condition is not met by the usual type of prior information in the applica-
tions of the BVAR methodology described in the preceding section, since
in each equation the own lags are given priority, with the outcome that
the variance of their coefficients is greater than that of the rest of the co-
efficients of the equation. Thus, generally, the joint estimation of all the
model’s equations is an efficiency requisite in the BVAR framework.

I.3.5. Cointegration

At no point in the description of the BVAR model has reference been
made to the stationary or non-stationary nature of the stochastic process
modelled. In fact, this distinction has been knowingly omitted and reflects
the position that the Bayesian estimation perspective may accommodate
both cases without any need for differentiated treatment. As stressed, the
important thing is that the prior information should confront the sample in-
formation with a broad selection range, and this is done regardless of
whether the process is stationary or not. Moreover, likelihood, the other
source of information for the estimation process, is also immune to
whether the process is stationary or not, in that the assumption that the
overall sample density is normal does not depend on whether the pro-
cess analysed is stationary or not. Therefore, from a Bayesian stand-
point, there is in principle no reason to address analysis of the stationary
and non-stationary series differently.

Admittedly, this stance has been criticised when the analysis unfolds
in a context of non-stationary processes with unit roots and potential coin-
tegration relationships. Specifically, Lütkepohl (1991), Clements and Mi-
zon (1991) and Phillips (1991) have suggested that, on the basis of prior
information which takes all the coefficients to be inter-independent (both
in the same equation and between equations) and which assigns a mean
equal to one, or close to one, to the first own lag coefficient and of zero to
the rest, the Bayesian estimation of the VAR models tends to be biased
towards systems made up of univariate AR models, being incapable of
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capturing the possible common stochastic trends that characterise cointe-
grated processes. Sims (1991a) suggested that these critiques were
poorly grounded, arguing that, owing to the superconvergence property of
the estimators in the presence of cointegration relationships, these as-
pects tend to manifest themselves with clarity, irrespective of the type of
prior information used.

Alvarez and Ballabriga (1994) furnish evidence on this matter, modify-
ing the usual prior information of BVAR models so that it explicitly incor-
porates the possible existence of cointegration relationships in the pro-
cess analysed and performing a minor Monte Carlo experiment with a
cointegrated process that allows the power of different estimation meth-
ods for capturing the long-run relationship to be considered. The results
obtained sustain Sims’ proposition as opposed to that of the critics, pro-
vided that the prior distribution has been selected in keeping with a good-
ness-of-fit criterion.

I.4. Identification of VAR models

The foregoing methodological description has not drawn on any eco-
nomic argument, excepting the minimum that may be implicit in the selec-
tion of the economic variables it is sought to analyse. This may be puz-
zling, but it is one of the elements that helps in shaping a sort of brand
image for VAR methodology: the clear differentiation between the statisti-
cal and economic aspects of the analysis, which respectively define the
specification and identification stages of a VAR model.

The foregoing discussion has thus focused on the model’s specifica-
tion stage. Classical (UVAR) and Bayesian (BVAR) specification methods
have been proposed, but in both cases the aim has been to use the sta-
tistical generality of the autoregressive representation in [I.1]-[I.3] without
contaminating it with arguments of an economic nature. The result of this
process is, therefore, a purely statistical model. Or, more exactly, a re-
duced-form model, terminology which is confined in econometrics to in-
struments of statistical representation lacking economic content.

Admittedly, obtaining the reduced form may be an aim in itself if what
is sought is to forecast or analyse a set of correlations. However, when
the aims of the analysis include matters such as the evaluation of the ef-
fectiveness of monetary policy, the reduced form is insufficient, and an in-
termediate step must be set up towards a statistical model in structural
form that has the economic content necessary to respond to valid ques-
tions. As has been reiterated, VAR methodology has sought from the out-
set to be an operational alternative to traditional simultaneous-equation
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macroeconomic models, the main aim of which is precisely to respond to
questions such as those formulated. Thus, the extra effort of obtaining a
model interpretable on the basis of the reduced form is usually an un-
avoidable task in VAR (both UVAR and BVAR) methodology applications.
This stage of the analysis is the model identification stage.

Sims’ initial work and the ensuing applications soon highlighted the
fact that the identification of VAR models was one of the weakest flanks
of the methodological proposal. Indeed, the critical opinion that VAR
models were simple reduced forms which, as such, were not valid for the
quantification of economic relationships rapidly became widespread.

Actually, this criticism was not strictly true; as can be seen in the sub-
sequent formal description, the initial applications of the methodology
used a contemporaneous causal chain equivalent to a recursive simulta-
neous-equation structural model. Admittedly, however, a recursive struc-
ture is rarely appropriate for describing economic reality, which is why
VAR models were duly susceptible to criticism in terms of their identifica-
tion, though not for the absence thereof but for its dubious credibility. This
is a fresh paradox if it is recalled that, in the related original motivation,
the identification of simultaneous-equation models was alleged to be
lacking in credibility.

Being one of the most controversial aspects of the methodology, the
identification stage focused, and continues to focus, much of the academ-
ic discussion on VAR models. What may be considered a relatively satis-
factory solution to the problem has arisen in the sense that current identi-
fication methods are a substantial improvement on the method used in
the initial applications and are, in turn, in keeping with the broadly non-re-
strictive spirit of the methodology.

I.4.1. Formal description

Conceptually speaking, the identification of an econometric model is
an extremely well known generic problem which concerns the model it-
self, not the modelling methodology. It is commonly considered as the ob-
taining of a structural model on the basis of its reduced form. The struc-
tural model is economically interpretable and will be identifiable if it is
made up of statistically distinguishable equations which, as such, can be
retrieved unequivocally drawing on the statistical variability summarised
in the reduced-form model.

As stated, the problem is not resolved opting for one or another
methodology; it will face all methodologies. What can actually distinguish
one methodology from another is the means of tackling the problem.

36



Thus, traditional simultaneous-equation models manage to make their
equations statistically distinguishable by the strategy of inclusion or exclu-
sion in the various equations of variables treated as exogenous (8). Tak-
en to unjustified extremes, this strategy provides an illusory or incredible
identification according to Sims’ classification (1980).

Conversely, VAR methodology does not resort to exogeneity and
uses an identification strategy combining a minimum of exclusion restric-
tions with conditions on the probabilistic structure of the model’s error
component. More specifically, a VAR model is called structural when the
statistical distinction of its equations is obtained through imposing a set of
restrictions (not necessarily exclusion restrictions) that ensures the or-
thogonality of the model’s error components, allowing in turn their inter-
pretation as original sources of economic variability.

The requirement for orthogonality for the error component is not usual
in traditional structural models, and reflects a deep-seated conceptual dif-
ference with respect to whether the relevant variability from the economic
standpoint is «total» or «unexpected» variability. Traditional models pro-
ceed as though it were total variability which were relevant, whereby they
do not insist on the orthogonality of disturbances, something unavoidable
when it is wished to analyse the dynamic implications of the model, under
the conviction that it is unexpected variability that is relevant.

The orthogonality requirement also explains the equivalent use com-
monly given in the literature on VAR models to the terms «identification of
the model» and «orthogonalisation of the error component». To be more
specific, we return to the reduced form in the notation of expression [I.1],
which we reproduce below (9):

Yt = B(L)Yt + DZt + εt [I.24]

where, it will be recalled, the components of εt are generally correlated,
with the covariance matrix equal to Σ throughout t. The identification of a
VAR model can thus be considered as the obtaining as a linear combina-
tion of εt of a new disturbance vector whose components are orthogonal
and economically interpretable. Or, in more formal terms, as the obtaining
of an invertible matrix A, nxn, such that, throughout t:

Aεt = νt [I.25]

where it is intended that the components of νt should represent isolated
sources of economic variability (fiscal or monetary, private or public, sup-
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ply or demand, etc.), so that their variance and covariance matrix is diag-
onal, which, moreover, without loss of generality, can be normalised to
the identity. Note that the matrix A actually provides the connection be-
tween the reduced and structural forms of the VAR model. Pre-multiply-
ing the reduced-form VAR model [I.24] by A gives the structural VAR
model:

AYt = AB(L)Yt + ADZt + νt [I.26]

Or, what is equivalent:

C(L)Yt = GZt + νt [I.27]

where

C(L) = A[I – B(L)]

G = AD

Note that the model [I.26]-[I.27] has indeed the form of a traditional
structural model, with the particularity that all the predetermined variables
are lagged endogenous variables, with the exception of the deterministic
component, and that the error component is orthogonal. It is these same
particularities which define it as a structural VAR model.

The expressions [I.26]-[I.27] also allow concrete form to be given to
the foregoing affirmation, relative to the identification of the VAR models
via the combination of restrictions in the contemporaneous coefficient
matrix and conditions in the probabilistic structure of the error component:
it is matrix A which contains the impact coefficients, and it should be se-
lected so as to ensure that the condition holds regarding both the orthog-
onality of the structural disturbances and the statistical distinction of the
system’s equations, so that the structure is effectively identified. A selec-
tion of A ensuring both conditions is its specification as a triangular ma-
trix, which is known as the Choleski scheme [see, for example, Sims
(1980)]. This was the usual choice in the early applications of the
methodology, which, as can now be clearly appreciated, is equivalent to a
contemporaneous causal chain and converts to the model [I.26]-[I.27] in a
recursive structural model.

Admittedly, the recursive strategy seems to be technically correct in
that it generates an orthogonal vector and a structure made up of distin-
guishable equations. However, as mentioned, recursive structures are
not generally appropriate for describing economic reality owing to the fact
that they do not incorporate the relationships of a simultaneous nature
that normally characterise such reality [see, for instance, Cooley and
Leroy (1985)]. They may be criticised in this respect for using barely cred-
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ible contemporaneous restrictions and, as a result, they fail in the attempt
to isolate sources that are credibly interpretable in economic terms, a fun-
damental aspect of the identification process.

The advance of VAR models in the literature on identification has
moved in the direction of breaking recursiveness, considering more gen-
eral specifications of the A matrix that give rise to more credible structural
models. To obtain these specifications, resort has been had essentially to
two types of identification restrictions: one short-run (10) [see, for exam-
ple, Bernanke (1986), Blanchard and Watson (1986) or Sims (1986a)],
and one long-run [see, for instance, Blanchard and Quah (1989)].

The short-term restrictions are implemented via the specification of
zeros in specific positions of the A matrix, justified normally by lags in the
reception of informative flows by certain economic agents. For example,
the delay with which the monetary authority receives information in rela-
tion to macroeconomic developments may warrant the assumption that
the interest rate does not respond contemporaneously to disturbances in
output and price levels: two zeros in the A matrix that may help identify
the supply of and demand for the economy’s liquid stocks. The denomi-
nation of short-run with which reference is made to this type of restriction
is clear, since what is involved is restricting exclusively the contempora-
neous effect of certain disturbances.

The long-run restrictions are usually grounded in economic theory
and, as their name indicates, they restrict the long-run effect of certain
disturbances in certain variables, leaving short-term dynamics free. For
example, the model may include the restriction that monetary distur-
bances do not have real effects in the long run: a restriction based on the
principle of long-run monetary neutrality.

The use of long-term restrictions requires the use of a stationary rep-
resentation (11), so that the long-run effects are well-defined; i.e. so they
are not explosive. Formally, imposing these restrictions is equivalent to
restricting certain linear combinations of the matrix of long-run effects as-
sociated with the representation of moving averages (MA) of the struc-
tural model. Note that under the assumption of stationarity, the polynomi-
al C(L) in [I.27] may be inverted, giving rise to the following MA represen-
tation for the non-deterministic component of Yt:

Yt – M(L)DZt = M(L)A–1 νt [I.28]

where

M(L) = [I – B(L)]–1 = C(L)–1 A
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The matrix of long-run effects of the various structural disturbances is
the sum of matrices defined by the polynomial M(L) A- 1, each of which
determines the effect of the disturbances in the different time horizons.
That is to say, the matrix of long-run effects is given by:

[I.29]

And, as stated, the long-run restrictions are equivalent to restricting
certain linear combinations of the entries of the matrix in [I.29], which can
be expressed as follows:

[I.30]

where the operator vec(•) transforms the m x n matrices into mn x 1 vec-
tors stacking their n columns, and p represents the number of restrictions.
In the particular case that cancels the long-run effect of disturbance i in
variable j, the value of c will be zero and the W matrix will be 1 x n2, with
a one in the entry [(j – 1)*n] + i, i, j = 1, ..., n and zeros in the remaining
entries.

Significantly, the set of short- and long-run restrictions described
above shapes a framework for highly parsimonious identification from the
restrictive standpoint: when the exclusion is used it is so solely with the
contemporaneous impacts, without excluding potential lagged effects,
and when it restricts the lagged effects it does so in a lax fashion, condi-
tioning only the long-run effect. In this respect, we discussed earlier that
the VAR identification framework observes the relatively unrestrictive
spirit of the methodology.

I.4.2. Estimation of the structural model

The estimation of the structural VAR model remains to be tackled.
This specifically involves the estimation of the matrix polynomial C(L) and
of the G matrix of the model [I.27]. Here, use of the expressions [I.24]-
[I.27] will be necessary.

Drawing on expression [I.25], which related reduced-form to struc-
tural-form disturbances, the compatibility between the variance and co-
variance matrices of the disturbances of the reduced- and structural-form
models imposes the following relationship between Σ and the A matrix of

vec = c
p × 1

M(1)A
–1

n2 × 1

W
p × n2

M(1)A
–1

 = Mi A
–1∑

i = 0

∞

40



contemporaneous effects (remember that the structural error component
covariance matrix has been standardised to the identity):

AΣA′ = I [I.31]

Or, in an equivalent manner:

Σ = A–1 A–1′ [I.32]

Note below that the very expressions [I.24]-[I.25] suggest the possibil-
ity of estimating the structural model in a two-stage procedure:

Stage 1 Estimation of the D and B(L) coefficient matrices of the re-
duced-form VAR, and a consistent estimator for Σ, Σ̂, based
on the resulting ε̂t residuals.

Stage 2: Use ε̂t from stage 1 along with the conditions [I.30] and
[I.32] to obtain the maximum-likelihood estimator of the A
matrix.

The conjunction of the first-stage D and B(L) estimators with the sec-
ond-stage A estimator A then allows the G and C(L) estimators of the
structural model to be obtained.

Stage 1 does not introduce new elements, simply considering estima-
tion of the reduced-form VAR by means of the methods described in the
specification sections I.2. or I.3, depending on whether the classical or
Bayesian version of the model is chosen.

Stage 2 proposes maximising, in relation to the matrix of A coeffi-
cients, the sample likelihood of the series of reduced disturbances ob-
tained in the first stage, taking into account the possible long-run restric-
tions [I.30] and the compatibility condition [I.32]. To specify, note that, un-
der the assumption of normality, the likelihood of the estimation problem
of stage 2 is, taking logarithms and without taking into account the con-
stant:

[I.33]

The estimation problem in stage 2 is hence to obtain the A matrix that
maximises [I.33] subject to the conditions [I.30] and [I.32]. Note that the
number of different conditions in [I.32] is not n2 but (n2+n)/2, since Σ is
symmetrical. Therefore, the maximum number of contemporaneous coef-
ficients other than zero that can be determined using the conditions in
[I.30] and [I.32] is [(n2+n)/2]+p; the rest of the coefficients equal zero,
constituting short-term identification restrictions. Thus, when use is not

– T
2

 ln _Σ_ – 1
2

 ε′ˆ t  Σ–1
 ε̂ t∑

t = 1

T
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made of long-term restrictions (p=0), the number of short-term restrictions
(nil entries of the A matrix) should, at least, be equal to (n2-n)/2.

This two-stage estimation procedure we have described is, in fact,
that most used in VAR methodology applications. It is attractive for two
reasons. First, it is in keeping with the idea of the clear separation of sta-
tistical specification restrictions from economic identification restrictions, a
distinctive feature -as we have mentioned- of VAR methodology. And fur-
ther, if the model is exactly identified, the method generates efficient esti-
mators of the structural coefficients, since they are equivalent to those
that would be obtained via the direct estimation of G and C(L) through the
maximum likelihood method. The reason is that, under the assumption of
normality, the information matrix on the likelihood of the structural VAR
model [I.27] is diagonal with respect to [D, B(L)] and A, a condition estab-
lished in Durbin (1970) to justify the efficiency of the two-stage procedure.
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II

USES OF VAR MODELS

As seen in the identification section, the requirement that structural
disturbances be orthogonal is a distinguishing feature of VAR methodol-
ogy, the purpose of which is to isolate the primitive sources of economic
variability. These are to be found in the behaviour of supply or demand,
in the public or private sectors, or else in the external or domestic sec-
tors of the economy. It should come as no surprise, therefore, that ana-
lysts who draw on VAR modelling methodology usually have a particular
interest in the dynamic effects of these primitive disturbances on the
course of the observable variables which characterise the economic
framework it is sought to study; i.e. in the effects of ν on Y, according to
our notation.

For the same reason, it should come as no surprise either that ana-
lysts are more interested in recovering the structural MA representation in
[I.28] than the structural autoregressive representation in [I.26]-[I.27],
since it is the MA representation which directly shows the effects of ν on
Y. In fact, as will be seen below, the typical uses of VAR models are
based almost entirely on obtaining and analysing the MA representation
of the model.

These uses are: to calculate the model impulse response function, to
decompose the variance of its forecasting error and to obtain future pro-
jections. Such uses generally serve the same purpose as the customary
ones of an econometric model, namely, to contrast hypotheses and make
future projections of the relationships incorporated therein. But they are
marked by the emphasis on the primitive sources of variability, so that the
hypotheses testing is not based on the statistical significance of certain
structural coefficients, but on the overall pattern of interrelationships de-
ployed by the model through the impulse response function and the vari-
ance decomposition; likewise, the exogenous variability which can condi-
tion future projections does not derive from the variability of the observ-
able variables which are determined outside the model, but rather from
the primitive sources of disturbance incorporated into the model.
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A clarification is needed regarding the existence of the MA represen-
tation of the model, on which we have said its use is largely based. As
the reader will be aware, such representation exists in the stationary
case, since the autroregressive representation can be inverted. The
same is not true, however, in the non-stationary case associated with the
existence of unit roots, so common in empirical analysis in economics. In
the latter case the autoregressive representation cannot be inverted and,
accordingly, the MA representation of the model does not exist, in the
sense that the succession of matrices M(L) is not convergent.

Does this mean that the analysis should be reduced to the stationary
framework? To confirm that the answer is negative, let us return to repre-
sentation [I.27] and consider successive substitution for the first term of
that expression of Yt–s, s = 1, ..., H, according to the probabilistic mecha-
nism [I.27]. This substitution process enables the first H terms of the MA
form of the model to be obtained and Yt to be expressed as the sum of
two components:

[II.1]

Or, equally:

[II.2]

where

and Et-H denotes the expected value on the information available at t-H.

The first component in [II.2] represents the contribution to the value of
Yt of the innovations occurring between the periods t-H+1 and t, inclusive;
a contribution which is determined by the sum of the first H terms of the
MA form of the model. The second component is the mean projection of
Yt based on the information available in the period t-H, which, as such,
depends on the vector of observable variables Y between the periods t-H
and t-H-m+1 (m, remember, is the number of lags) and on the determinis-
tic component between the periods t-H+1 and t.

The convenience of the decomposition [II.2] is that it exists for any fi-
nite H and is independent of whether or not the process analysed has unit
roots. We shall use it to present the description of uses which follows.

Ms =  Ms A
–1

;     s = 0, ..., H – 1

Yt = Ms  ν t – s + E t – H Yt∑
s = 0

H – 1

Yt = Ms A
–1

 ν t – s + E t – H Yt∑
s = 0

H – 1
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II.1. The impulse response function

As its very name suggests, the vectoral impulse response function
quantifies the effect on the n variables of the system, over a time horizon
of H periods, of an isolated impulse equal to one in each of the n distur-
bances of the model. That is to say, the function quantifies the effect on
Yi t, i = 1, ..., n, of the disturbance νjt – s = 1, j = 1, ..., n, occurring s periods
previously, s = 0, ..., H–1. The calculation of the function for the entire
system therefore generates n x n series of length H.

It can immediately be appreciated that these n x n series correspond
to those which make up the succession of matrices 


Ms, s = 0, ..., H – 1, of

the first component of the expression [II.2]. To check this, consider the
following succession of disturbances:

ν′t – 
_
s = (0, ..., 1 j, 0, ..., 0), 0 ≤

_
s ≤ H – 1

[II.3]
ν′t – s = 0, s ≠

_
s

That is say, the jth component of t – 
_
s is given a shock of one unit in

the period of ν. Note then that the result of calculating the first component
of the expression [II.2] with the succession [II.3] is equal to the jth column
of the matrix  


M_

s, Note also, that according to the decomposition [II.2],
this response must be interpreted as the deviation from the mean projec-
tion Et-H Yt induced in the system by the specific impulse.

Thus, we conclude that the impulse response function is an instru-
ment for assessing the dynamic effect of the different sources of variabili-
ty (disturbance) included in the model, and that its computation for a time
horizon H is equivalent to the computation of the first H terms of the MA
form of the structural model. It should be stressed that different identifica-
tions involve alternative interpretations of the different sources of variabil-
ity. Consequently, the dynamic response depends on the identification
scheme employed.

II.2. The decomposition of the variance of the forecasting error

One way of assessing the relative importance of the different sources
of disturbance is to analyse their contributions to the model forecasting
error. The motivation for this analysis is clearly seen in the decomposition
[II.2], when it is observed that its first component represents, as already
mentioned, the contribution to the value of Yt of the disturbances occur-
ring between t-H+1 and t, and, in turn, the error of forecasting Yt with the
information available at t - H. Accordingly, the analysis of the contribu-
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tions to the forecasting error in fact provides information on the relevant
sources of variability at time horizon H.

The contributions are analysed by calculating the variance of the fore-
casting error for the horizon of interest and isolating the percentages of
this variance attributable to each of the disturbances of the model; hence
the name «variance decomposition» given to this exercise. More specifi-
cally, the variance of the error of forecasting Y with time horizon H is the
variance of the first component of the expression [II.2], which is the fol-
lowing (remember that the variance of ν has been standardised as equal
to one):

[II.4]

The formal exercise consists then in decomposing [II.4] into compo-
nents which represent the percentage of the variance of the forecasting
error associated with Yi explained by the contribution of the component νj,
i , j = 1, ..., n, at time horizon H. This decomposition would require addi-
tional assumptions if the entries of the vector ν were temporally or con-
temporaneously correlated since it would not be possible to attribute the
covariances clearly. In fact, no such correlations exist, so that the decom-
position does not require any further hypotheses.

Indeed, given the temporal and contemporaneous orthogonality of the
entries of ν the variance of any linear combination of structural distur-
bances shall be the sum of the variances of each of the entries involved,
so that the isolation of their contribution to the overall variance simply re-
quires the terms associated with each disturbance to be isolated and their
variances summed. In the case that concerns us, the linear combination
analysed is the first component of the expression [II.2], which we repro-
duce here for convenience:

[II.5]

Note that the terms of [II.5] which correspond to the element νj be-
tween the periods t – H + 1 and t are those associated with the j t h

columns of the matrices 

Ms, s = 0, ..., t – H + 1. These terms can be iso-

lated algebraically by post-multiplying the matrices 

Ms by the instrumental

matrix Rj, all of the entries of which are equal to zero, except for (j, j),
which is one. Specifically, if we call the sum of all these terms Pj, then:

[II.6]Pj = Ms Rj ν t – s;     j = 1, ..., n∑
s = 0

H – 1

Ms ν t – s∑
s = 0

H – 1

νar Ms ν t – s∑
s = 0

H – 1

 = Ms Ms
_

∑
s = 0

H – 1
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where

and

It is therefore clear that the forecasting error [II.5] can be expressed
as the sum of the n components in [II.6]. Hence: 

[II.7]

This expression isolates the contribution to the forecasting error of
each of the n disturbance components and provides the basis for calcu-
lating their contribution to the variance of such error. Specifically, given
the orthogonality of the components Pj, j = 1, ..., n, the variance of the
forecasting error in [II.4] can immediately be expressed as follows:

[II.8]

where

νar Pj = Pj; j = 1, ..., n

The variance of the forecasting error of Yi with horizon H is therefore
the entry P(i, i), and the proportion of this variance explained by the dis-
turbance νj is given by the ratio Pj(i, i)/P(i, i), i, j = 1, ..., n; a proportion
which, as already argued, enables the relative importance of the different

P ≡ νar Ms ν t – s∑
s = 0

H – 1

 = νar Pj∑
j = 1

n

 = νar P j∑
j = 1

n

 = Pj∑
j = 1

n

Ms ν t – s = Ms Rj ν t – s∑
s = 0

H – 1

∑
j = 1

n

∑
s = 0

H – 1

 = Pj∑
j = 1

n

Ms Rj = 

0 … Ms (1, j) … 0

0 … Ms (2, j) … 0

… … … … …

0 … Ms (n, j) … 0

Rj = 

0 … 0 … 0

… … … … …

… … … … …

0 … 1jj … 0

… … … … …

0 … 0 … 0
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sources of variability incorporated into the model to be weighed up.
Again, as in the case of the impulse response function, the contributions
of the variability depend on the identification scheme used.

II.3. Future projections

Unlike the calculation of the impulse response function and the vari-
ance decomposition exercise, distinctive of the VAR methodology, the
making of future projections is a common use of econometric models.
The term «projection» must be understood here in the broad sense, en-
compassing the terms forecast and simulation. Its choice, in preference
to the more usual forecast and simulation, is justified by the intention of
interpreting these exercises in the general sense of projecting any aspect
of the future distribution of the variables included in the model, and not
only their mean dimensions. The emphasis on this matter can, indeed, be
affirmed as being distinctive of the VAR framework, and we shall return to
it in the next section. In this section, meanwhile, we shall concentrate on
obtaining mean projections.

In the terminology of the VAR methodology we distinguish between
unconditional and conditional projections. The former refer to those gen-
erated by the model with the information available in the period which de-
fines the origin of the forecast, without any condition being imposed on
the future path of the variables of the model. Conditional projections, in
contrast, involve certain restrictions on the future path of some of the vari-
ables of the model; for example, on the future path of the rate of interest
or wages.

In any case, we can return to expression [II.2] to specify the distinc-
tion. Written for the period t = T + h, h ≥ 1, the expression is as follows:

[II.9]

Let us now suppose that sample information is available to period T
and that the forecasting horizon is h=H. The mean unconditional projec-
tion of YT + H with the information available at T is therefore ETYT + H, in
accordance with [II.9]; i.e. the result of making the forecasting errors up to
horizon H equal to their mean, which is zero.

The use of [II.9] and the reduced form of the model [I.24] allows us,
also, to obtain the explicit way of calculating ETYT + H. Specifically, let us ask
about the mean unconditional projection of YT + h for the horizon h = 1, ..., H.

YT + h = Ms νT + h – s + E T YT + h∑
s = 0

h – 1
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According to [II.9], this projection forh = 1 es ETYT + 1, and according to
[I.24] it can immediately be seen that:

ETY T + 1 = B(L)YT + 1 + DZT + 1 
[II.10]

= B1YT + B2YT – 1 + ... + BmYT – m + 1 + DZT + 1

Likewise, in accordance with [II.9], for h = 2, a mean projection equal
to ETYT + 2, is obtained, which according to [I.24] and [II.10] is given by:

ETYT + 2 = B1ETYT + 1 + B2 YT + ... + BmYT – m + 2 + DZT + 2 [II.11]

Continuing the argument successively for horizons h = 3, ..., H, the
following expression is obtained:

ETYT + H = B1ETYT + H – 1+ ... +BmETYT – m + H + DZT + H [II.12]

That is to say, the mean unconditional projection with the information
available at T at horizon H is obtained by substituting in the reduced form
of the model their own unconditional projections made with the informa-
tion available at T for the lags of the variables.

For their part, conditional projections add to the information used by
unconditional ones information relating to the existence of certain restric-
tions on the path of some of the variables of the model between the origin
and the final period of the horizon of the projection; i.e. restrictions on
certain components of the vectors YT + 1, YT + 2 , ..., YT + H. In general, it is
possible to restrict any linear combination of these components. But the
most usual type of restriction consists in fixing the future values of some
of them (e.g. fixing the path of future wages), so that the consequences
of that path on the rest of the economy, according to the model, can be
projected.

It is a trivial matter to impose a future path on an exogenous variable;
since the variable is determined outside the model, it is simply a question
of fixing its value at the desired level. However, it is not a trivial matter
when the variable it is wished to fix is endogenous, which, by definition, is
always the case with VAR models. Here, the variable is determined in the
model, so that the restriction must necessarily be made by restricting the
sources of variability incorporated in the model; i.e. in terms of the distur-
bances of the model. This is detected immediately in [II.9] where it can be
seen clearly, given the information available at T, that to restrict YT+h is
equivalent to restricting the forecasting error with horizon h. That is to
say, it is equivalent to requiring the deviation between the expected value
and the restricted value to be equal to:

[II.13]YT + h – E TYT + h = Ms νT + h – s∑
s = 0

h – 1
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where 
~
YT + H represents the restricted value of YT + h. More particular-

ly, the components YiT + h can be restricted at the horizons h = 1, ...,h
con 1 ≤ h ≤ Η, thereby imposing a future path on the ith component of vec-
tor Y.

What this [II.13] shows, in any case, is that the imposition of, for ex-
ample, r restrictions on the future path of the variables of a VAR model is
equivalent to imposing r linear restrictions on the vectors of future distur-
bances of the model, something that may be expressed generally as:

Q N = q [II.14]

where N is an nH-dimensional vector and contains the disturbance vec-
tors νT + 1, νT + 2, ..., νT + H; Q is an r x nH matrix defined in terms of the
matrices


Ms to incorporate restrictions of the type [II.13]; and q is an r-di-

mensional vector which contains the constants which define the r linear
restrictions imposed.

The mean conditional projection of the disturbances between T + 1
and T + H is therefore given by the mean of the vector N conditional upon
[II.14], E[N_QN = q] ; and the mean conditional projection of YT+H is imme-
diately obtained from [II.9], with h=H and taking on both sides of the ex-
pression expectations conditional upon [II.4] and the information available
at T, so that:

[II.15]

That is to say, the mean conditional projection is the unconditional
one corrected by the conditional contribution of the disturbances over the
time horizon of the forecast.

As a final comment, it should be stressed that, unlike in the case of
the impulse response function and the variance decomposition, future
projections do not necessarily depend on the identification of the model.
In fact, they are clearly independent in the unconditional case in which,
as we have seen, only the statistical variable summarised in the reduced
form of the model is used. They are not dependent in the conditional case
either when the conditions merely restrict the forecasting error, since, ac-
cording to the following equation, the forecasting error is independent of
the identification:

[II.16]Ms νT + H – s∑
s = 0

H – 1

 = Ms eT + H – s∑
s = 0

H – 1

ET YT + H_QN = q  = E T YT + H + Ms E νT + H – s_QN = q∑
s = 0

H – 1
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where the relationship between ν and ε given in [I.25] and the definition of
Ms in [II.2] have been used. Only if the restriction of the forecasting error
involves imposing a specific path on a component of the vector ν is the
identification significant, since, in that case, it is sought to restrict the spe-
cific behaviour of an agent or economic sector, for which purpose it is
necessary to have identified previously the source of the economic vari-
ability of the model associated therewith.

II.4. Measure of uncertainty

Although nothing explicit has been said in this respect, the three uses
described in the foregoing sections involve calculations surrounded by
uncertainty, since they are based on a stochastic model with estimated
coefficients, which are, in turn, random variables. Specifically, the im-
pulse response function and the variance decomposition depend directly
on the 


Ms coefficient matrices of the MA form of the model (1), as clearly

shown by the calculation made with [II.3] and the expression [II.8], re-
spectively. For their part, the future projections depend directly on the au-
toregressive form coefficients (D, Bs) which determine ETYT + H en [II.9],
as well as the first component in the same expression, which depends, in
turn, on the 


Ms coefficients and the error term ν.

The immediate conclusion is that the impulse response function and
the variance decomposition and also the future projections are in them-
selves stochastic magnitudes which can be characterised by their corre-
sponding distributions. In the case of the first two, in fact, this permits
confidence intervals to be obtained for the dynamic effects generated by
the different disturbances, so that it is possible to contrast hypotheses on
the effects of the different sources of economic variability.

The description of the foregoing sections has been limited to the ob-
taining of point estimates, which may or may not be means of these mag-
nitudes. However, as the reader will be aware, a point estimate is hardly
informative. Ideally, analysts must attempt to characterise aspects of the
distribution of interest which give as precise an idea as possible of the
uncertainty surrounding their calculations. With a greater or lesser degree
of approximation, this characterisation is possible when the model used
incorporates a complete stochastic description of all its variables -always
the case with VAR models-, which we discuss below.
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(1) Note that, when the true model is known, there is no uncertainty as regards the im-
pulse response functions and the variance decomposition of the forecasting error.



We start with the impulse response function and the variance decom-
position which, as we have said, are a direct function of the 


Ms.coefficient

matrices. Remember that, according to the expression [II.2], these matri-
ces are given by


Ms = Ms A–1 [II.17]

In turn, and according to expression [I.30], the Ms matrices which
make up the M(L) matrix polynomial are defined in terms of those corre-
sponding to the polynomial B(L) of the reduced form:

M(L) = [I – B(L)]–1 [II.18]

Combining expressions [II.17] and [II.18] gives the following relation-
ship:


M(L) = [I – B(L)]–1 A–1 [II.19]

That is to say, the matrix polynomial with

Ms coefficient matrices de-

pends, directly and non-linearly, on the polynomial with Bs coefficient ma-
trices of the reduced form and matrix A with contemporaneous coeffi-
cients which determine the model identification scheme.

Expression [II.19] reveals explicitly the stochastic nature of the im-
pulse response function and the variance decomposition, showing that
their distribution depends on the distributions of the coefficients in B(L)
and A. It also shows, however, that this dependence is highly non-linear,
with the consequence that obtaining the mean responses and decompo-
sitions is not the same as using the mean of B(L) and A in the first term of
[II.19]. In practice, the Monte Carlo methods are frequently used to obtain
the distributions of responses and decompositions by means of succes-
sive draws from the distributions of B(L) and A, both known multivariate
normal distributions, according to our assumptions (2). In fact, this is the
usual practice to obtain confidence intervals which are normally present-
ed in the applications of the methodology.

We shall now consider the exercise of projecting the future. As men-
tioned above, we interpret this exercise in the sense of projecting any as-
pect of the future distribution of the variables included in the model, and
not only their mean values. From this standpoint, a convenient way of
proceeding is to consider directly the mechanism which generates future
values. Specifically, let us write the VAR model taking as reference peri-
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(2) Other possible methods for characterising the uncertainty include analytic [see, for
example, Lütkepohl (1990)] and bootstrapping methods [see, for example, Samaranayake
and Hasza (1988)].



od T and with the error term expressed, according to the relationship
[I.27], as a function of the structural disturbances vector ν:

YT + s = B1YT + s – 1 + B2YT + s – 2 + ... + BmYT + s – m +

+ DZT + s + A–1νT + s [II.20]

s ≥ 1

Note then that, given the path  s = 1, 2, ..., H, it is possible to gener-
ate realisations of the observable vectors YT + 1, ..., YT + H by means of
draws from the distributions of B(L), D, A and the disturbance vectors  νT

+ 1, ..., νT + H and substituting successively in [II.20], which again gives us
access to use of the Monte Carlo methods as a way to characterise em-
pirically the joint distribution of the future path of the model variables.

The usual practice is to use an approximation (3), tending not to take
into account the uncertainty associated with the estimation of the coeffi-
cients, which are treated as constants. Unconditional projections may
therefore be made by means of successive draws from the distribution of
vector N defined in [II.14], which is, on our assumptions, a multivariate
normal distribution with zero mean and a covariance matrix equal to the
identity matrix. Likewise, the conditional projections are obtained by
means of draws from the distribution [N_QN = q].

[N_QN = q] ~ N [Q′ (QQ′)–1 q, I – Q ′ (QQ′)–1 Q] [II.21]

In either case, conditional or unconditional, analysts are able not only
to characterise the mean values of the future distribution empirically, but
also to accompany them with confidence intervals and, more generally,
calculate the probability of any event associated with the future path of
the variables included in the model, which is fundamental when the high
degree of uncertainty surrounding the future path of the economy is
recognised.
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(3) However, from an analytical point of view there are results which contemplate the
uncertainty associated with the estimation of the coefficients [see, for example, Sama-
ranayake and Hasza (1988)].
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PART TWO

A MACROECONOMETRIC MODEL
FOR THE SPANISH ECONOMY



INTRODUCTION

The first part of this paper was devoted to a detailed theoretical expla-
nation of an econometric methodology -VAR modelling- used more and
more frequently in empirical work. Part two describes a macroeconomet-
ric model used periodically by the Banco de España Research Depart-
ment to forecast the main magnitudes of the Spanish economy, as well
as to perform simulations. Continued use of the model and the perspec-
tive offered by the time that has elapsed since it was designed have en-
abled the limitations of the initial specifications to be identified and its po-
tential as a tool of monetary policy to be developed. These advances
have gradually been published [Álvarez, Ballabriga and Jareño (1995),
Álvarez, Ballabriga and Jareño (1997), and Álvarez, Ballabriga and
Jareño (1998)] and are now extended in this paper.

When designing a model it should first be recognised that forecasting
is an activity replete with difficulty. This is especially true in the context of
the social sciences, for at least three reasons: 1) the factors explaining
the phenomena to be predicted tend to be numerous; 2) the relationship
between such phenomena and their determinants is usually complex, so
that it is not known precisely; and 3) perhaps most importantly, the future
path of such factors is surrounded by a high degree of uncertainty. In
sum, the complexity of social reality makes forecasting inherently difficult,
and this difficulty is reflected in the high degree of uncertainty normally in-
volved.

Among the social sciences economics is, of course, no exception. Al-
though sometimes extreme positions are held which deny, owing to its in-
accuracy, that economic forecasting is of any use whatsoever, it nonethe-
less seems undeniable that any decision-making process in a context of
uncertainty requires, to some extent, consideration of the future path of
certain magnitudes. Thus, despite all the attendant risks and difficulties,
economic forecasting is perceived as necessary. In particular, forecasts
of the main macroeconomic magnitudes are of great interest to economic
policymakers as they can indicate the desirability of changing certain ele-
ments of the policies being pursued.
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Although not always consciously, economic forecasts are always ex-
plicitly or implicitly based on a model. This model may be formally repre-
sented, as in the case of the various types of econometric models. The
procedure used is then transparent and may be applied as new informa-
tion is received on the state of the economy. Also the model may be re-
produced by persons other than those who developed it. The alternative,
traditionally used by numerous analysts, are models lacking a formal rep-
resentation and incorporating a considerable amount of subjective per-
ception, in the hope – not always realised – that this will help to give them
greater predictive power than other more formal models. 

Any forecast of the future path of a macroeconomic variable involves
a set of hypotheses which introduce a far from negligible degree of uncer-
tainty. Accordingly, it is important that the various assumptions involved
are made explicit. If these hypotheses are also accompanied by a formal
description of the associated risks, then it is possible to characterise the
probability of the future path of the economy.

The logical approach, given the uncertainty associated with economic
forecasting, is to attempt a meaningful characterisation of such uncertain-
ty rather than failing to take it into consideration and giving a false im-
pression of rigour and precision. Paradoxically, controversy often arises
over differences of a tenth of a percentage point between various fore-
casts, while the fact that our ignorance allows us to do no more than
specify an interval or range within which, with a certain probability, the
macroeconomic magnitude of interest will lie goes unrecognised. In this
respect, econometric models in which all the variables are determined
within the model itself do in fact permit the uncertainty inherent in the pro-
jections to be assessed. This is a fundamental advantage over econo-
metric models in which certain explanatory variables are taken as given,
as well as over subjective forecasts.

For the Spanish economy, most of the macroeconomic forecasts pub-
lished at intervals of less than a year are based either on univariate time
series models or on expert predictions, producing a void as regards fore-
casts derived from econometric models that capture the interrelationships
between economic variables and provide both objective measurements of
the uncertainty surrounding forecasts and reliable quantifications of the
probability of occurrence of certain events. This void can be filled by
building multivariate econometric models, such as the one dealt with in
this paper.

Although the forecasting of macroeconomic magnitudes is, in any
case, of great interest, following the change in the the monetary policy ar-
rangements brought about by the approval of the Law of Autonomy of the
Banco de España and the consequent setting, by the monetary authori-
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ties, of direct inflation targets, the analysis and prediction of prices has
become even more important from the standpoint of the central bank.
Consequently, meaningful inflation forecasts and measurements of the
uncertainty associated with them have become essential, and the motiva-
tion to develop tools to make them has increased sharply. In this respect,
multivariate econometric models, such as the one set out below, consti-
tute very useful tools, which effectively supplement the range of instru-
ments for analysing and forecasting inflation.

After this introduction, part two is structured as follows: chapter III ex-
plains the variables used in the model, chapter IV details the model spec-
ification process, chapter V indicates the main interactions existing be-
tween the different variables and chapter VI explains certain applications
of the model.
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III

THE MODEL VARIABLES

In general, the first critical decision to be made when building econo-
metric models which seek to encompass the fundamental features of an
economy usually relates to the choice of variables. In economic theory a
large number of variables may be relevant for characterising an economy.
However, in a model, the consideration of an excessive number of vari-
ables usually makes the estimates unreliable. This problem, which afflicts
econometric modelling in general, is aggravated in the case of Spain by
the fact that only a short run of statistical data is available. The quarterly
National Accounts time series began in 1970, while many of the monetary
series begin in 1974. The sample periods analysed by models including
both types of variables must therefore begin no earlier than in 1974.

In short, the problem is how to obtain as general a picture of the
Spanish economy as possible, while accepting that the number of vari-
ables used to characterise it cannot be very large. With these premises it
seems appropriate to begin by considering which are the sectors of inter-
est on which a model of the Spanish economy should be structured. Once
this sectorisation has been accomplished it is necessary to determine
which minimum set of variables characterises each sector. The aim of this
approach is to ensure that the set of variables chosen is both restricted
and capable of characterising the economy as a whole. The final step in
this process is to select the available statistical series that best approxi-
mate the variables chosen. In keeping with this approach, the sectorisa-
tion of the economy used in this paper (see Chart III.1) distinguishes be-
tween the external, monetary, public and (non-monetary) private sectors,
thus providing a complete, structured description of the Spanish economy.

III.1. The external sector

This sector captures the influence of the decisions of economic
agents who do not belong to the Spanish economy. The opening up of
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the economy to external markets has accelerated in recent decades and
given rise to a considerable increase in the interrelation between the do-
mestic and international variables. It therefore seems relevant to include
in the model some variables explicitly reflecting the external environment.
Given that one of the main channels for relations between different
economies is trade it seems appropriate to select the variables in accor-
dance with its main determinants: competitiveness and external activi-
ty (1). The model will therefore include an exchange rate and a measure
of activity in the rest of the world.

Generally speaking, the exchange rate is included for two reasons.
First it is a variable which conditions monetary policy. From this stand-

CHART III.1

SELECTION OF VARIABLES

(1) Naturally, the demand for imported goods and services also depends on the coun-
try’s level of activity. Nonetheless, given its domestic nature, this variable is included in the
non-monetary private sector.
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point, a good approximation for the initial years of the sample would be
the peseta/US dollar rate, while for the last few years of the period anal-
ysed the peseta/D-Mark rate would be more suitable. Second, the ex-
change rate is the transmitter of external effects on the economy’s pur-
chasing power. Thus the exchange rate will be indicative of the competi-
tiveness of the national economy. If a perspective based on competitive-
ness is adopted, as in this study, it would be more appropriate to use a
multilateral exchange rate than a bilateral one, because the appreciations
or depreciations of the national currency against the currencies of some
trading partners are generally offset by its depreciations or appreciations
against the currencies of other countries. Of the multilateral exchange
rates regularly published the one selected for this model is the nominal
effective exchange rate vis-à-vis industrial countries (E).

A variable of activity in the rest of the world ought, in theory, to in-
clude all the other countries in the world; however, the quality of the
statistics on numerous countries is not fully satisfactory, so it may be ad-
visable to restrict the geographic scope to highly developed countries,
since these provide the best quality information. The empirical evidence
for the Spanish economy seems to suggest that the OECD is the most
appropriate group of countries, both because of its high share in world
output and because of the reliability of the statistics of its members. Con-
sequently, the series used to represent world activity is that of the real
gross domestic product of the OECD countries (GDP*).

III.2. The monetary sector

This sector is associated with the actions of the monetary authority and
the financial institutions. The behaviour of this sector can be characterised
by a price and a quantity variable: the interest rate and the money stock.

The interest rate is the preferred instrument for implementing mone-
tary policy, insofar as it is a determinant of the consumption and invest-
ment decisions of economic agents. Although numerous interest rates ex-
ist -both real and nominal, short- and long-term-, and each has a different
impact on the economy, for simplicity’s sake a single interest rate is used
in this model to characterise the stance of monetary policy and its effect
on the spending decisions of economic agents. The available evidence
suggests that interbank market interest rates can adequately fulfil this
role. Accordingly, the series selected is the «interbank market one-month
non-transferrable deposit interest rate» (I).

Consideration of the money stock variable is prompted by the fact
that, although the demand for money equations estimated in recent years



have proven unstable, the money stock was the intermediate target of
monetary policy until 1994 and is currently used as an indicator in mone-
tary programming. The aggregate «liquid assets held by the public» (M)
seems an appropriate choice here; it was used as an intermediate target
in the central part of the sample period and it is an indicator of the mone-
tary pressures in the economy.

III.3. The public sector

The complexity and diversity of public sector activity can be approxi-
mated by its budgetary aspect, which can in turn be represented by the
budget deficit. Despite the limitations involved in reducing this sector to a
single variable, this decision has the advantage of helping to keep the
size of the model within manageable limits.
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CHART III.2

SERIES USED IN THE MODEL: LEVELS

Sources: Banco de España, Instituto Nacional de Estadística and OECD.
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The series selected is the State Cash-Basis Deficit (2) (D), since it
records payments, receipts and non-financial operations irrespective of
the way in which the State records its operations. All the same, given that
a large part of the variability of this series is a result of administrative fac-
tors, which should not have economic effects (3), a moving average of
four terms is considered. Also, as is customary, the series is expressed
as a percentage of nominal GDP. It should be pointed out that the reason
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CHART III.3

SERIES USED IN THE MODEL:
YEAR-ON-YEAR RATES (a)

Sources: Banco de España, Instituto Nacional de Estadística and OECD.
(a) In the case of the interest rate and the State deficit, year-on-year changes are used.

(2) The series used is estimated at the Banco de España. It differs from the (non-fi-
nancial) cash-basis deficit according to the National Audit Office in that it corrects certain
time lags in some of the spending items.

( 3) For example, changes to tax collection timetables should not affect agents’ per-
ceptions of the state of public finances.
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for not using a series reflecting the whole of general government, as
would be desirable, is simply the considerable lag with which information
is obtained on general government other than the state.

III.4. Private sector (non-monetary)

The purpose of this sector is to represent the decisions of domestic
agents in goods and services markets, as well as in the labour market. In
view of such purpose, price and wage and output and employment levels
have been selected (4).

Inclusion of the price variable is justified for at least two reasons: 1) it
is an important reference variable in the decision-making of private eco-
nomic agents, and 2) it directly reflects the national economy’s inflation-
ary situation, control of which is the monetary authority’s highest priori-
ties. The series chosen to represent prices is the consumer price index
(CPI) (5), as it is the series to which private economic agents usually re-
fer and in terms of which the central bank sets its targets. The choice of
alternative series, such as National Accounts deflators, has been ruled
out owing to the greater delay in the receipt of the data, the frequency
and magnitude of revisions, and, basically, the lower attention they re-
ceive from the various economic agents.

The wage variable reflects, in part, the terms on which equilibrium is
established in the labour market, and also indicates the possible exis-
tence of nominal pressures on the path of prices. If the aim is to capture
precisely the price formation process, then labour costs, which are an im-
portant component of firms’ variable costs, should be stressed. Compen-
sation per employee (W), which includes wages and social security con-
tributions, payable by both the employer and the employee, is the most
appropriate variable to represent the cost of labour.

Finally, output and employment have been selected as the variables
to reflect the level of real activity in the economy. The specific series cho-
sen are gross domestic product (GDP) and the employed population (L).

The level and twelve-month growth rate of the variables included in
this model are shown in Charts III.2 and III.3 for the whole sample period
considered. The source of the same is given in Table III.1.
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(4) Despite the private sector label, the variables in this group refer to the economy as
a whole.

(5) In fact, the series used in this model has been corrected for the effects of changes
to VAT rates in the first quarter of 1995. This correction has been made by estimating the
effect of the changes on the level of the series, and removing it from this and all subsequent
quarters.



IV

THE SPECIFICATION OF THE MODEL

IV.1. Description of the structure of the model

As indicated in section I.3.3, the specification of the prior information
incorporated into BVAR models is usually based on the empirical regular-
ities observed in the behaviour of the economic series, which are intro-
duced by means of a set of hyperparameters such as that specified in
[I.22]. In any case, these regularities should be considered a set of mini-
mum properties common to a large number of economic series, so that
the practical application of BVAR models should not solely be limited to
considering these regularities as the whole of the prior information set.
The specification of prior information in accordance with such regularities is
a point of departure for specifying a wider set of prior information which will
depend on the data used and the problem under study. In an attempt to ac-
commodate the particularities existing in the Spanish economy, the prior in-
formation set used in the model specified has the following features:

— Prior distribution of the coefficients

It is assumed that the prior distribution of the model coefficients is
multivariate normal. In formal terms, if β denotes the column vector which
includes all the model coefficients (1), then:

β ~ Nnm + d [β (τ), Ω (τ)] [IV.1]

n being the number of endogenous variables in the system, m the num-
ber of lags in the model and d the number of deterministic variables. To
characterise this distribution completely it is necessary to specify the vec-
tor of means β and the matrix of variances and covariances Ω which are
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a function of a small-dimensional vector of hyperparameters τ the entries
of which appear in Table IV.1. The functional relationships between the
prior means and variances and the entries of the vector of hyperparame-
ters τ are specified below.

Following the usual practice in the literature, it is assumed that the
matrix of variances and covariances is diagonal, so that the model coeffi-
cients are a priori independent, i.e. for each coefficient:

i = 1, ..., n

βijs ~ N [βijs (τ), σ2
ijs (τ)] j = 1, ..., n + d [IV.2]

s = 1, ..., m

i being the number of the equation, j the number of the explanatory vari-
able (both for the n stochastic variables of the system and for the d deter-
ministic variables) and s the number of the lag. In short, to fully charac-
terise the distribution of each coefficient it is only necessary to specify its
prior mean and variance.

The functional relationships between the prior means and variances
and the entries of the vector of hyperparameters are detailed below.

— Prior mean of the coefficients of the stochastic variables

The model distinguishes between two groups of variables with differ-
ent means associated with the first own lag, τ0 and τ1. The coefficients
associated with the rest of the lags have a zero mean. In the form of an
equation:

If i e C1

[IV.3]

If i e C2

[IV.4]

where C1 refers to the set of world activity, money stock, compensation
per employee, price, output and employment variables; and C2 refers to
the set of exchange rate, interest rate and budget deficit variables.

βijs  = 
τ1

0
       i = j,    s = 1 

otherwise

βijs  = 
τ0

0
       i = j,    s = 1 

otherwise
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— Prior mean of the coefficients of the deterministic variables

A zero prior mean is specified for this type of variable:

i = 1, ..., n

βijs = 0 j = n + 1, ..., n + d [IV.5]

s = 0
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TABLE IV.1

HYPERPARAMETERS ON WHICH THE PRIOR MEAN AND VARIANCE
OF THE MODEL COEFICIENTES DEPEND

τ0: Prior mean of the coefficient of the first own lag for a group of variables.

τ1: Prior mean of the coefficient of the first own lag for the rest of the variables.

τ2: Overall degree of uncertainty.
— This hyperparameter determines the relative weight of prior information.

τ3: Relative uncertainty of the rest of the variables.
— This hyperparameter indicates the importance of the rest of the variables.

τ4: Relative uncertainty of the lags.
— This hyperparameter indicates the extent to which the lags closer in time have

greater informative content than more distant in time.

τ5: Relative uncertainty of the constant term.
— This hyperparameter indicates the uncertainty as to the value the constant may

take.

τ6: Relative uncertainty of the seasonal dummy variables.
— The hyperparameter shows the uncertainty as to the value the coeficients associ-

ated with the seasonal variables may take.

τ7: Variation of the coefficients over time.
— This hyperparameter controls the variance of the random walk process for each

coefficient.

τ8: Relative uncertainty of the domestic variables in the world activity equation.
— This hyperparameter enables the world activity variable to be specified as

exogenous to the rest of the system when it takes a value of zero.

τ9: Relative uncertainty of world activity in the rest of the system.
— This hyperparameter makes it possible to distinguish from the rest of the vari-

ables, the prior uncertainty associated with the coefficients of world activity in the
rest of the variables.



where s = 0, since it is assumed that the deterministic variables only have
a contemporaneous effect.

— Prior variance of the coefficients of the own lags

Those lags corresponding, in each equation, to the variable which ap-
pears in the first term are called own lags. Their prior variance is consid-
ered to be determined by:

[IV.6]

As can be seen, the variance depends on the hyperparameters τ2 and τ4
and the element σ2

εi
. τ2 is a global hyperparameter on which all the prior

variances of the system depend. This hyperparameter determines the rel-
ative weight of prior information. Thus, a zero value means no account is
taken of sample information, while an infinite value means no account is
taken of prior information. The hyperparameter τ4 indicates the extent to
which lags closer in time have a greater information content than lags
more distant in time. High values of this parameter thus indicate that the
distant coefficients are, a priori, less important, while their importance will
be greater if the value is low. Finally,σ2

εi
is obtained, following Litterman

(1986), as the residual variance of an AR(m) model with a constant term.

— Prior variance of the coefficients of the lags of the other variables

The prior variance of the coefficients of the variables which, in each
equation, do not appear in the first term is specified as:

[IV.7]

This variance depends on, apart from the terms commented on
above, a further hyperparameter τ3 The effect of this hyperparameter is to
indicate the importance of the lags of the other variables. A low value im-
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plies scant interaction between variables, while a high value means that
the interactions are considerable.

— Prior variance of the constant term

The prior variance of the constant term depends on the hyperparame-
ter τ5. A high value of τ5 implies that hardly any prior information is avail-
able on the value the constant may take, and a value of zero implies that
the knowledge is complete. A zero τ5 together with a zero prior mean is
equivalent to not including a constant term in the model.

[IV.8]

— Prior variance of the coefficients of the seasonal dummies

Since the model includes variables that exhibit seasonal behaviour
(i.e. the consumer price index, liquid assets held by the public and em-
ployment), seasonal dummies are included in the equations. Their prior
variance depends on hyperparameter τ6. A high value of τ6 indicates a
high degree of uncertainty as to the value the coefficients associated with
these seasonal variables may take, while a zero value means that the pri-
or knowledge is perfect. As in the case of the constant, a zero value for
the hyperparameter τ6 together with a zero prior mean, is equivalent to
excluding the seasonal dummies. The functional form of the prior vari-
ance shall be established as:

[IV.9]

where Ii is 1 if the variable i exhibits seasonal behaviour (as in the case of
the money stock, prices and employment), and otherwise 0.

— Time variation of the coefficients

This model allows for the possibility that the coefficients vary over
time. Specifically, each coefficient follows a random walk the variance of
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which is given by the hyperparameter τ7. Obviously, if τ7 is equal to zero,
the model considered does not vary over time. The formal representation
of this characteristic shall be:

βt = βt – 1 + ut [IV.10]

ut ~ N (0, τ7I) [IV.11]

— Prior variance of the coefficients of world activity in the rest
of the equations and of the coefficients of the rest of the 
variables in the world activity equation

The prior information under consideration implicitly assumes that all
of the variables are endogenous. However, in small economies such as
that of Spain, it is more appropriate to consider the possibility that world
activity is exogenous; i.e. that it is not affected by the domestic vari-
ables. To attain this objective, two additional hyperparameters are intro-
duced. The first, τ8, captures the relative uncertainty of the domestic
variables in the world activity equation, which is the first in the system.
Exogeneity is obtained if τ8 is zero. Hyperparameter τ9, on the other
hand, can be used to control the relative uncertainty of world activity in
the rest of the system.

Thus, the prior variance of the coefficients of the rest of the variables
in the world activity equation shall be:

[IV.12]

while the prior variance of the coefficients of world activity in the rest of
the equations shall be:

[IV.13]
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— Prior variance of the coefficients of the interest rate equation

Like world activity, the interest rate is treated differently from the other
variables. Thus, in this model the interest rate is deemed to follow an
AR[1] process exogenous to the rest of the system variables:

[IV.14]

where the interest rate equation is the fourth in the system.

— Prior variance of the coefficients of other deterministic variables

In the prices equation there are also two step-type deterministic vari-
ables, to capture the introduction of VAT in Spain in the first quarter of
1986 and the change in VAT rates in the first quarter of 1992, respective-
ly. The prior variance for these variables shall be:

[IV.15]

where the prices equation is the seventh in the system.

The GDP and employment equations contain, as further deterministic
variables, a broken trend with a break point in the first quarter of 1985. It
should be noted that the use of deterministic trends, especially towards
the end of the sample period, usually creates serious problems when it
comes to forecasting, as it makes the forecasts inflexible when new infor-
mation is incorporated. However, this is not true in models, like the one
presented here, with Bayesian schemes for updating the coefficients,
which allow for the adaptation of forecasts in the light of new information.
The prior variance for this broken trend shall be:

[IV.16]

the GDP equation being the eighth and the employment one the ninth.

As can be seen, the prior variances of the constant and other deter-
ministic variables (with the exception of the seasonal ones) exhibit the
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same functional form. This fact gives substance to the assumption,
adopted in this model, that the same degree of knowledge exists as to
the values their coefficients may take, so that they are assigned the same
uncertainty.

Once the prior distribution considered in the model has been estab-
lished, the next step must be to estimate the reduced form thereof, com-
bining the prior information with the sample information.

IV.2. Estimation of the reduced forms

Most of the series considered in this analysis can be characterised as
non-stationary processes. The traditional solution to avoid the possibility
of spurious regressions consisted in the estimation of models in differ-
ences. However, with the development of cointegration theory it has been
shown that this way of proceeding is incorrect, since it involves disregard-
ing information on the long-run relationships that presumably exist be-
tween these series, giving rise to biases in the estimated parameters.
Likewise, in view of the debate which usually arises in relation to the spe-
cific number of cointegration relationships and the practical difficulties of
interpreting them when the number of variables modelled is not small,
one way of proceeding, used more and more frequently, is the unrestrict-
ed estimation of VAR models in levels. This procedure enables consistent
estimators to be obtained, which are asymptotically equivalent to those
obtained using maximum likelihood (2). Also, the consistency of the esti-
mators is not affected by the introduction of the prior information ( 3 ) .
Consequently, in the different models that have been estimated the differ-
ences have not be taken of the variables.

In the specification of multi-equation models there are generally effi-
ciency gains when all the equations are estimated together, instead of
each equation being estimated separately. As mentioned in the first part
of this paper, in the case of unrestricted VAR models these efficiency
gains disappear, since each equation includes the same explanatory vari-
ables. However, when the classical estimation methods are abandoned it
should be taken into account that the fact that the same explanatory vari-
ables are included in each equation does not necessarily mean that the
possibility of increasing the efficiency of the estimation with respect to
single equation models has to be ruled out. Indeed, the condition for
there not to be any efficiency gains in the estimation of BVAR models is
that the covariance matrices of the prior distribution of the coefficients are
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(2) See Sims, Stock and Watson (1990), and Park and Phillips (1989).
(3) See Sims (1991) and the evidence provided by Álvarez and Ballabriga (1994).



a multiple of the residual variance for each of the equations (4). This
would indicate the appropriateness of multi-equation estimation for this
type of model. However, as the preliminary results obtained with joint es-
timation of the whole system did not reveal any major differences with re-
spect to equation-by-equation estimation, and in view of the high compu-
tational costs in a model of this size (5), following the usual practice in the
literature (6) single equation estimations have been used.

Estimation of a reduced form can generally be carried out in various
ways. The usual methods place a high value on considerations of unbi-
asedness, consistency and efficiency, criteria which would lead to the use
of ordinary least square estimations when this perspective is adopted. If a
pure Bayesian perspective is adopted instead, as discussed in section
I.3, the point of departure should not be a prior distribution of the coeffi-
cients which depends on a small set of unknown τ h y p e r p a r a m e t e r s ;
rather a prior distribution would also have to be associated with these pa-
rameters and the relevant integration process carried out to obtain the
posterior distribution of the model coefficients. To avoid this process,
which is costly, alternative procedures have frequently been used in the
literature: 1) prior distributions associated with specific vectors of hyper-
parameters which reflect some empirical rules regarding the behaviour of
the economic time series (7); 2) the prior associated with the vector of hy-
perparameters which maximises the likelihood of the system. From a
Bayesian perspective, this approach involves approximating the mean of
the a posteriori distribution through the mode. If the prior distribution of
the vector of hyperparameters is uniform, this approximation will be good,
provided that, for those vectors of hyperparameters for which the likeli-
hood is high, the related posterior distribution does not differ substantially
from that associated with the maximum-likelihood vector. Also, as an al-
ternative to these criteria, when forecasting models are built, frequently
some measure of forecasting error is minimised. Specifically, the criterion
followed in this paper involves minimising the root of the mean square
out-of-sample forecasting error (8) one to four periods ahead (9). This
one-year forecasting statistic shall be called FE1.
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(4) See Doan, Litterman and Sims (1984).
(5) The proportion, in computer time, of equation by equation as opposed to joint esti-

mation is approximately 1 to 14,000.
(6) See, for example, Sims (1989).
(7) An interpretation of this approach could be that the prior distribution of the vector

of hyperparameters τ is a degenerate distribution which places the whole mass of probabili-
ty at this point.

(8) The model is re-estimated with information to t and is used to predict t+s, s=1,...,4.
(9) The statistic used in this paper averages the roots of the mean square errors of the

different variables for the different forecasting horizons. To avoid the criterion excessively
penalizing the equations with high variability, the root of the mean square error of each
equation is divided by the residual standard deviation of an AR(m) model.
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Note that the specification discussed in section IV.1 is sufficiently
general to encompass the various possibilities discussed. Thus, the esti-
mation of a UVAR model within this framework is possible, as discussed
in the first part, making τ2 tend to infinity. For its part, the prior distribution
which reflects the empirical rules described in section 1.3.3., on the be-
haviour of economic time series, is sometimes associated with the Uni-
versity of Minnesota, for which reason we shall refer to it as MIN. The val-
ues of the hyperparameters of this distribution appear in Table IV.2 (MIN
column). Finally, the vector of hyperparameters associated with the one-
year forecasting statistic is also contained in that Table (10) (BVAR col-
umn). To determine this vector, the non-standard optimisation routine de-
scribed in Sims (1986a) is used, as well as the Kalman filter to combine
the prior distribution of the model coefficients with the sample information.
The non-standard optimisation routine works as follows: given an initial
set of hyperparameters and its related optimisation statistic, the proce-
dure interpolates a surface onto the statistics, determines its minimum
and obtains the vector of hyperparameters associated with that minimum.
When the statistic associated with the vector has been obtained, through
the Kalman filter, the process of interpolation and minimisation is repeat-
ed, until convergence is reached. In this specific case, 200 iterations
have been carried out.

The logarithmic transformation of all the series is considered in the
model, except the rate of interest, which is expressed in basis points, and
the budget deficit which is expressed as a percentage of GDP. The sam-
ple period used begins in the first quarter of 1974 and ends in the final
quarter of 1996 (11). The number of lags considered in the various mod-
els was four (12).
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( 1 0 ) Also as an alternative estimation criterion the likelihood has been maximised.
Nonetheless, the out-of-sample predictive capacity is somewhat inferior to the use of an ob-
jective forecasting function.

(11) The period used to calibrate the model runs from the first quarter of 1974 to the
last quarter of 1993.

(12) The consideration of a larger number of lags would reduce the predictive capaci-
ty of the model.



V

THE INTERRELATIONSHIPS BETWEEN THE MODEL VARIABLES

As mentioned in the first part of the paper, in VAR methodology anal-
ysis of the relationships between variables is usually based on study of
the impulse response functions and the variance decompositions for the
structural model specified.

V.1. Reasons for the identification scheme used

There are different possibilities as regards the way in which identifica-
tion of a model is achieved; basically these possibilities involve using
contemporaneous, long-run or mixed restrictions (1). In this section con-
temporaneous restrictions are employed. These assume that certain vari-
ables do not affect others at the very moment the disturbance occurs, so
that there is no contemporaneous causality in that direction. In any event,
it should be emphasised that no restriction is placed on dynamic interrela-
tionships between the different variables. Chart V.1 shows the economic
restrictions specified, all defined contemporaneously. The direction of the
arrow indicates the direction of the contemporaneous causality. So, for
example, the arrow which goes from the interest rate to the exchange
rate indicates that changes in the interest rate may affect the exchange
rate contemporaneously. At the top of the chart are to be found the vari-
ables which are not affected contemporaneously by any other: world ac-
tivity, the budget deficit and the interest rate. At a second level are to be
found the exchange rate, affected by world activity, the interest rate and
the level of activity, and the money stock, determined by the interest rate
the price level and the level of activity. Finally, the private sector variables
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(1) For the Spanish economy, Campillo (1992) and Campillo and Jimeno (1993) use
Choleski schemes; Álvarez, Jareño and Sebastián (1993) and Ballabriga and Sebastián
(1993) use non-recursive identification schemes based on contemporaneous restrictions;
Álvarez and Sebastián (1998) use identification schemes based on long-run restrictions.



are at a third level, a recursive contemporaneous relationship being es-
tablished between them in the order wages, prices, national activity and
employment. In addition, the private sector variables are affected by
world activity, the budget deficit, the interest rate and the exchange rate,
although the latter does not affect the level of national activity contempo-
raneously.

This set of restrictions involves relinquishing an isolated identification
of the structural disturbances of the economy in favour of an identification
based on groups of disturbances (2). The identification by groups seeks
to isolate sets of equations which may be taken as representative of the
behaviour of specific economic agents. Thus, each set should capture in-
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( 2 ) See, as examples of this strategy, Ballabriga (1988) or Álvarez, Ballabriga and
Jareño (1995).

CHART V.1

REFERENCE IDENTIFICATION SCHEME
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dependent sources of variability (structural disturbances), so that the dis-
turbances of the different groups must be orthogonal between each other.
If the informative content of the data is considered not to be sufficient to
isolate the behaviour represented by any of the equations of a group, the
orthogonality may be obtained by establishing a recursive scheme be-
tween the variables of the group.

Under this approach, the identification scheme shown in Chart V.1
has five groups. The first two seek to isolate the disturbances associated
with the two variables directly related to the external sector of the econo-
my, namely world activity and the exchange rate. A third set would repre-
sent the behaviour of the public sector in its fiscal dimension. The fourth
group would contain the behaviour of the money market, through consid-
eration of the interest rate and money stock variables. Finally, the fifth set
would include those variables which represent the output and employ-
ment aspects of the decisions of the private sector; this group would in-
clude the wages, prices, level of activity and employment variables. A
more detailed description of these groups and their justification is given
below.

The group formed by the world activity equation identifies the distur-
bance associated with this variable as structural. In other words, this
identification means that the domestic variables of the Spanish economy
cannot affect the level of world output contemporaneously (3).

The exchange rate is identified by means of an equation which opens
channels for the contemporaneous effects associated with financial dis-
turbances, through the interest rate, and trade disturbances, both domes-
tic, caused by changes in the level of national activity, and external, asso-
ciated with world activity.

The actions of the public sector are identified in the third group so
that it is considered that the disturbances of the budget deficit are asso-
ciated with fiscal policy. The identification used does not allow for the
contemporaneous influence of any other variable on the budget deficit.
So, for example, the effect of an increase in tax receipts as a conse-
quence of an increase in activity shall be manifested with a lag. More-
over, fiscal policy is considered to act independently of the contempora-
neous economic situation. This hypothesis is justified to the extent that
the makers of fiscal policy obtain information on the current economic
situation with a certain lag.
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(3) Given the size of the Spanish economy, in the estimation of the different models
the restriction has been imposed that the domestic variables cannot affect world activity,
even with a lag.
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The fourth group of equations identifies the monetary sector, permit-
ting separate analysis of disturbances arising from the supply and de-
mand for money. Thus, the equation corresponding to the interest rate is
associated with the money stock, which does not respond to the contem-
poraneous economic situation. This hypothesis, as in the case of fiscal
policy, is a consequence of the lag with which information is received.
The money demand equation is represented by the money stock equa-
tion, which, following a traditional view, depends on the level of activity,
the price level and the interest rate.

The private sector makes up the fifth group of equations of the iden-
tification. Given the set of variables included in this group, the product of
the interaction between the supply and demand for goods, on one hand,
and the supply and demand for labour on the other, the isolation of sup-
ply and demand disturbances for both markets seems excessively ambi-
tious. It is in this context that the identification by groups of equations
proves its usefulness, since, given the impossibility of isolating previous
disturbances, the objective becomes to isolate the distrubances which
affect the market for goods and labour as a whole. Thus, the distur-
bances associated with the equations for the level of activity, prices, em-
ployment and wages together represent the disturbances to the goods
and labour market, without distinguishing between supply and demand,
for goods and labour. The identification scheme specified permits this
group of equations to react to fiscal, monetary and external distur-
bances. The possibility that some correlation persists between the dis-
turbances of the block is eliminated by means of a recursive identifica-
tion scheme, following the order of wages, prices, level of activity and
e m p l o y m e n t .

In accordance with the reduced form estimated and with the identifi-
cation scheme set out, the estimated contemporaneous structural coeffi-
cients and their associated statistics are shown in Chart V.1.

V.2. Transmission mechanism and contribution to variability

After the structural identification has been carried out, use of the im-
pulse response functions and the variance decomposition permits the dy-
namic interactions of the model to be analysed. As discussed in the first
part of this paper, the impulse response functions show the effects on the
different variables of the system of identified disturbances, which could
be interpreted as a simulation exercise indicating the sign, magnitude and
persistence of the response. In turn, the variance decomposition indi-
cates the contribution to the variability of the forecasting error for each
variable, at different forecasting horizons, of each of the different distur-
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bances of the system. This section presents the results obtained for the
forecasting model estimated in this paper (hereinafter, BVAR). The re-
sults for an unrestricted VAR model (hereinafter, UVAR) are presented by
way of a counterpoint.

In the literature on VAR models it is customary to report in the im-
pulse response functions the effects on each variable of movements in
the structural disturbances with a magnitude of one standard deviation.
Chart V.2 presents the impulse response functions obtained for the
BVAR and UVAR models, which will enable a direct comparison to be
made between the two models. Meanwhile, it is a widespread practice to

86

CHART V.2

IMPULSE RESPONSE FUNCTION
BVAR AND UVAR MODELS

Source: Authors’ calculations.
(a) ν∗ represents the structural disturbance associated with the equation for *.
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report impulse response functions accompanied by measurements of un-
certainty, as discussed in part one. Charts V.3 and V.4 present these
measurements for both models. In the light of the last three charts, the
greater degree of interrelation in the UVAR model than in the BVAR mod-
el can be stressed. That said, a greater degree of interrelation is not nec-
essarily desirable, since it could simply be reflecting a problem of overfit-
ting; i.e. it may be the case that what is merely spurious interaction
(noise) is being considered an interrelationship.

In the BVAR model impulse response functions the power and persis-
tence of the effects of the own disturbances, as well as the lesser impor-
tance of cross effects can be appreciated. By contrast, the UVAR model
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CHART V.3

IMPULSE RESPONSE FUNCTION
BVAR MODEL

Source: Authors’ calculations.
(a) ν∗ represents the structural disturbance associated with the equation for *.
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impulse response functions reflect a greater degree of interrelation, as
well as a high degree of variability in their dynamics. This difference in
the degree of interrelation between models estimated by classical and
Bayesian methods should come as no surprise, since it is customary in
the literature. Nonetheless, to make claims regarding the goodness of the
estimated interactions requires the use of some kind of criterion. The eco-
nomic interpretation is one. The predictive capacity of the different mod-
els is another. As will be seen, both the economic interpretation and the
predictive capacity of the BVAR model are preferable to those of the
UVAR model. In this respect, it seems reasonable to maintain that the
variability and the magnitude of the relationships of the UVAR model are
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CHART V.4

IMPULSE RESPONSE FUNCTION
UVAR MODEL

Source: Authors’ calculations.
(a) ν∗ represents the structural disturbance associated with the equation for *.
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TABLE V.2

VARIANCE DECOMPOSITION
BVAR model (a)

Contribution of the structural disturbances to the variability of the forecasting error

GDP
Short run 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Long run 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

E
Short run 0.2 98.7 0.1 0.1 0.1 0.4 0.1 0.1 0.1

(0.2) (0.6) (0.1) (0.1) (0.1) (0.4) (0.1) (0.1) (0.2)

Long run 0.8 94.7 0.5 0.2 0.1 1.4 0.7 0.7 0.9
(0.9) (2.2) (0.6) (0.2) (0.1) (1.2) (0.8) (0.7) (1.3)

M
Short run 0.2 0.4 96.8 0.1 0.0 0.2 1.4 0.8 0.1

(0.2) (0.3) (0.7) (0.1) (0.0) (0.3) (0.5) (0.3) (0.1)

Long run 1.1 1.1 87.6 0.2 0.2 3.1 2.8 2.8 1.1
(1.2) (1.0) (3.4) (0.2) (0.3) (1.7) (2.2) (1.7) (1.4)

I
Short run 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Long run 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

D
Short run 0.2 0.1 0.1 0.1 98.4 0.4 0.1 0.3 0.3

(0.2) (0.1) (0.1) (0.1) (0.8) (0.4) (0.2) (0.3) (0.4)

Long run 0.9 0.3 0.7 0.2 93.4 1.0 0.6 1.3 1.6
(1.1) (0.3) (0.8) (0.2) (3.0) (0.8) (0.8) (1.3) (1.9)

W
Short run 0.3 2.6 0.3 1.4 0.6 93.9 0.7 0.2 0.0

(0.1) (0.3) (0.1) (0.1) (0.1) (0.3) (0.1) (0.1) (0.0)

Long run 0.7 4.7 2.6 1.0 0.5 81.3 6.6 2.1 0.4
(0.5) (0.8) (0.9) (0.3) (0.2) (1.4) (1.1) (0.8) (0.4)

CPI
Short run 1.9 18.5 0.1 0.9 0.3 2.2 75.9 0.1 0.1

(0.5) (1.2) (0.2) (0.4) (0.2) (1.0) (1.3) (0.1) (0.1)

Long run 2.2 17.8 0.5 0.9 0.3 5.9 70.7 0.6 1.1
(1.4) (2.4) (0.9) (0.6) (0.3) (2.4) (3.5) (0.9) (1.4)

GDP
Short run 0.2 0.3 0.1 0.6 0.3 5.9 0.1 92.4 0.1

(0.2) (0.2) (0.1) (0.2) (0.2) (1.1) (0.1) (1.3) (0.2)

Long run 1.0 1.2 1.8 0.5 0.5 11.9 1.6 80.3 1.2
(1.4) (1.0) (1.9) (0.3) (0.5) (6.1) (1.4) (7.0) (1.7)

L
Short run 0.1 0.2 0.1 0.3 2.1 0.4 0.7 2.2 93.9

(0.1) (0.2) (0.1) (0.2) (0.4) (0.5) (0.4) (0.6) (0.9)

Long run 0.6 0.5 0.8 0.5 2.0 2.9 1.4 2.9 88.5
(0.7) (0.6) (1.1) (0.5) (0.9) (3.4) (1.4) (2.1) (4.2)

LGDPCPIWDIMEGDP*

Source: Authors’ calculations.
(a) Standard deviation in brackets. ν* represents the structural disturbance associated with the equa-

tion for *.
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CHART V.3

VARIANCE DECOMPOSITION
UVAR model (a)

Contribution of the structural disturbances to the variability of the forecasting error

GDP*
Short run 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Long run 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

E
Short run 2.4 69.8 3.5 10.3 0.8 5.6 3.4 3.4 1.0

(2.1) (10.5) (3.7) (8.1) (0.8) (4.9) (2.7) (2.6) (0.9)

Long run 9.1 34.3 7.5 17.2 1.7 13.4 5.1 7.0 4.9
(8.3) (11.2) (5.6) (9.0) (1.1) (7.8) (3.9) (4.3) (3.3)

M
Short run 2.5 7.1 52.5 8.3 3.0 9.4 7.0 8.8 1.4

(2.7) (5.7) (11.5) (6.2) (2.2) (6.7) (5.5) (3.4) (1.8)

Long run 9.9 15.7 20.3 14.1 4.5 14.5 8.4 9.5 3.1
(9.9) (11.1) (11.8) (11.1) (3.6) (10.9) (7.0) (6.9) (3.1)

I
Short run 1.9 4.3 6.0 73.2 0.7 5.4 2.0 5.4 1.1

(1.4) (3.1) (3.9) (7.6) (0.6) (4.1) (1.6) (3.3) (1.1)

Long run 5.0 12.4 9.6 43.2 2.0 11.2 5.2 8.6 2.9
(4.4) (6.7) (5.6) (9.6) (1.1) (5.7) (2.7) (4.3) (2.0)

D
Short run 4.3 11.1 8.7 20.8 22.6 11.7 4.5 12.0 4.3

(4.2) (9.4) (7.3) (13.3) (7.4) (7.8) (3.5) (7.4) (4.2)

Long run 10.3 16.1 11.2 20.0 7.4 13.1 7.6 10.2 4.0
(9.3) (9.5) (6.6) (10.2) (3.4) (6.5) (5.6) (5.0) (2.7)

W
Short run 0.3 6.3 1.5 6.6 0.4 79.9 3.6 0.9 0.4

(0.5) (5.8) (2.2) (6.1) (0.5) (10.3) (3.3) (1.1) (0.5)

Long run 6.5 17.9 6.8 13.5 2.7 35.2 6.8 7.5 3.1
(8.8) (14.7) (7.7) (11.5) (2.5) (17.6) (5.3) (7.9) (4.0)

CPI
Short run 1.1 8.7 7.5 15.4 1.2 31.1 28.4 4.1 2.5

(1.3) (7.8) (7.2) (9.8) (1.0) (16.5) (9.9) (3.6) (2.9)

Long run 7.7 15.0 8.6 15.5 2.7 28.0 10.3 8.5 3.6
(8.4) (11.5) (8.0) (11.1) (2.2) (17.1) (6.7) (6.7) (3.5)

GDP
Short run 0.9 13.5 3.5 15.7 5.3 12.9 7.6 39.2 1.4

(1.0) (10.1) (3.5) (10.9) (3.6) (5.7) (6.6) (10.7) (2.4)

Long run 8.2 19.9 10.8 12.7 4.9 22.4 5.3 12.5 3.4
(10.6) (14.2) (8.8) (10.6) (3.9) (15.9) (5.9) (8.2) (4.4)

L
Short run 3.4 8.7 6.8 24.2 3.1 8.7 10.1 9.7 25.4

(2.9) (7.4) (7.4) (14.9) (3.0) (8.8) (8.6) (8.3) (9.3)

Long run 7.3 18.3 11.6 15.5 4.3 17.8 8.4 8.9 7.9
(8.4) (12.9) (10.1) (11.0) (3.4) (12.1) (7.2) (7.9) (4.6)

LGDPCPIWDIMEGDP*

Source: Authors’ calculations.
(a) Standard deviation in brackets. ν* represents the structural disturbance associated with the equa-

tion for *.



excessively affected by the non-systematic component of the sample in-
formation considered, and therefore reflect the existence of merely spuri-
ous effects.

With respect to their economic interpretation, the effects of the BVAR
model are shown to be superior to those of the UVAR model. Thus, an in-
crease in world activity has, in the BVAR model, an expansionary effect
on the Spanish economy, which results in an increase in prices and the
level of activity. By contrast, that same disturbance in the UVAR model
would have a contractionary effect, which is not simple to explain. Like-
wise, exchange rate appreciations in the case of the BVAR model would
have a deflationary effect, while, surprisingly, there would be increases in
inflation in the case of the UVAR model. As for contractionary monetary
policy actions, reflected in increases in interest rates, a decline in prices
and in the level of activity is observed in both cases. Finally, a contrac-
tionary fiscal policy in the BVAR model reduces prices, while in the case
of the UVAR model an increase in prices and in the level of activity is ob-
served. As can be seen, the economic interpretation of the impulse re-
sponse functions of the UVAR model is not at all satisfactory.

The second tool contemplated when analysing the dynamic interac-
tions of VAR models is the decomposition of the forecasting error vari-
ance. Tables V.2 and V.3 present the results obtained for the BVAR and
UVAR models, respectively; the short-term value indicates the variability
explained at the end of the first year after the shock, and the long-term
value corresponds to the end of the third year.

In the light of these tables, the conclusions drawn from the impulse
response functions are corroborated; i.e. there is less interaction between
variables in the BVAR model than in a UVAR model, although presum-
ably, as already stated, for spurious reasons. Thus the BVAR model only
displays effects of more than 10 % in the cases of the effects of the ex-
change rate on prices and of wages on output. By contrast, in the UVAR
model effects exceeding 10 % are very numerous: those of world activity
on the budget deficit; those of the exchange rate and the interest rate on
all the domestic variables; those of the money stock on the budget deficit,
output and employment; those of wages on the exchange rate and on all
the domestic variables; those of prices on employment; and those of out-
put on the budget deficit (many of them difficult to interpret on the basis of
economic theory).
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VI

SOME APPLICATIONS OF THE MODEL

This chapter presents various applications of the multivariate BVAR
model estimated for the Spanish economy which attempt to exploit the in-
formation provided by the model, both for prediction and simulation.

VI.1. Forecasting performance

Once the quarterly macroeconometric model has been specified and
estimated, it must be evaluated in terms of its forecasting performance.
An initial evaluation can be based on the criterion used to estimate the
model, i.e., since a one-year forecasting statistic has been used as the
optimisation criterion, it should be checked that for the sample used in the
calibration this model has the smallest error at that horizon. However, al-
though the sample (1) for which results are given extends to the final
quarter of 1996, while the data used in the calibration only extend to the
end of the final quarter of 1993, the examination of the one-year forecast-
ing statistic is still of interest.

Moreover, there are least three further aspects of interest: 1) how the
model performs at horizons of other than one year; 2) how well the model
forecasts particular variables, since the calibration statistic used is joint
and global in nature. In this respect, since it is especially important for a
central bank to obtain sound forecasts of inflation and economic growth,
the forecasts obtained for these variables should be analysed in greater
detail; and 3) the significance of the interrelationships between the differ-
ent variables in the model. Although, generally, it is useful to evaluate the
advantages of using multi-equation models instead of univariate models,
in this particular case there are reasons to suspect that the advantages in
terms of prediction are scant. In fact, as can be seen in Table V.1, the hy-
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(1) Álvarez, Ballabriga and Jareño (1997) present additional evidence on the forecast-
ing performance of the BVAR model for a different sample period.



perparameter which controls the uncertainty associated with the other
variables has a low value (2). This, together with the low value of the hy-
perparameter associated with overall uncertainty (3), suggests that there
is little interaction in the model and, therefore, that it is not very different
from a model consisting of nine equations in which each variable de-
pends solely on its past values.

To answer these questions three alternative models have been con-
sidered. The results of these models will be compared with those of the
BVAR model. The first model considered is the unrestricted VAR model
(UVAR model) used in section V.2. The second model, hereinafter re-
ferred to as BAR, as it contains Bayesian prior information and an AR
specification, eliminates any interaction between the series, so that a set
of equations is obtained in which each variable is determined solely by its
lagged values. The third model considered is derived from using the prior
distribution which reflects the behaviour regularities described in section
I.3.3 (MIN). These three models constitute an appropriate reference
framework for the BVAR model: when the BVAR model is compared with
the UVAR model, the advantages of using a Beyesian approximation as
opposed to a classical approach can be assessed; when the BVAR mod-
el is compared with the BAR model, the advantages of adopting a multi-
variate model as opposed to a univariate model can be weighed up; and
finally, when the BVAR model is compared with the result of considering
the prior information on behaviour regularities (MIN), it can be seen
whether there are any advantages in carrying out a calibration process.

These models can be compared initially, as shown in Table VI.1, in
terms of their goodness of fit, measured on the basis of the global fore-
casting statistics FE1, FE2 and FE3 (4).

Table VI.1 shows that the superiority of the BVAR model over the oth-
ers is notable in all the statistics used. This shows that the overall fore-
casting performance of the BVAR model is better than that of the alterna-
tive models UVAR, BAR and MIN, not only at a horizon of one year, but
for longer periods too.

That said, these statistics are global in nature, so that they do not dis-
criminate between variables. However, as mentioned above, if one of the
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(2) Recall that the lower the value of this hyperparameter, the lower the importance in
each equation of the past of the rest of the variables. In the limiting case where the hyper-
parameter is zero, each variable only depends on its own past and on determinant vari-
ables.

(3) Recall that this hyperparameter determines the relative weighting of the prior and
sample information in the final estimation. The smaller the value, the greater the weight of
the prior information.

(4) The definition of FE2 and FE3 is a simple extension for periods of two and three
years of the statistic FE1 defined in section IV.2.



main purposes of this model is to attain good forecasts of inflation and
the other private sector variables, an individual analysis of each variable
is necessary. One way of carrying out such analysis is to observe the
mean absolute forecasting error of the different variables and models, as
shown in Table VI.2.

The most notable results are the following: 1) in general, the BVAR
model shows the best forecasting performance; 2) the unrestricted UVAR
model displays a low predictive capacity, which is relatively worse the
longer the forecasting horizon; 3) the MIN model, derived from the use of
the prior distribution of empirical regularities, tends to offer forecasts
which have very little to do with reality and also deteriorate badly for the
longer periods, and 4) the BAR model tends to give fairly satisfactory re-
sults. If the results for the price variable are examined, the distance be-
tween the forecasts of the BVAR model -the most accurate- and those of
the other models is notable. This same pattern is repeated when the fore-
casts of compensation per employee are analysed. On the other hand, in
the period analysed in this table, the relative advantages of the BVAR
model for the variables GDP and employment are smaller, the perfor-
mance of the BAR model being markedly better in the case of GDP.

Given the importance of the analysis of inflation and GDP, it is worth
studying in greater detail the characteristics of the forecasts generated by
the different models considered. From the standpoint of analysing the
economic situation, both the modification of the forecasts as new informa-
tion is included and the profile of acceleration or deceleration of the fore-
casts are key elements in characterising trends in inflation and economic
growth. With the aim of shedding some light on these features, the ob-
served values and the forecasts of the BVAR model are compared with
the forecasts of the UVAR model (see Chart VI.1), of the BAR model (see
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TABLE VI.1

OVERALL FIT OF THE MODEL (a)

FE1 88.5 118.2 115.42 108.3

FE2 330.8 527.8 430.50 508.7

FE3 752.6 1.340.6 955.63 1.610.2

Statistic
Models

BVAR UVAR BAR MIN

Source: Authors’ calculations.
(a) FE: mean square forecasting error statistic. The number refers to the maximum number of years

considered in the calculation. The higher the value of FE the poorer the forecasting perfomance of the
model.



Chart VI.2) and of the MIN model (see Chart VI.3). In each case, in addi-
tion to the observed values, the forecasts are presented with eight con-
secutive forecasting origins, the first group of series corresponding to the
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TABLE VI.2

MEAN ABSOLUTE FORECASTING ERROR (a)
Period 1990:I - 1996:IV

1 0.25 0.80 0.48 0.66 1 0.19 0.20 0.18 0.21
4 0.49 3.89 1.77 2.87 4 1.45 1.50 1.33 1.22
8 1.05 7.69 4.24 11.21 8 4.07 4.33 3.80 4.20

12 1.95 13.57 7.25 29.92 12 7.47 8.38 6.62 8.64

1 0.64 0.76 0.64 0.48 1 0.41 0.16 0.63 0.39
4 2.46 2.60 2.47 2.05 4 1.78 2.45 2.88 1.83
8 6.71 6.08 6.71 6.41 8 3.99 9.12 5.58 6.54

12 11.60 12.96 11.62 14.44 12 6.15 16.07 7.05 19.90

1 0.62 0.77 0.92 0.61 1 1.65 3.09 1.91 2.15
4 1.75 1.98 2.77 2.11 4 4.00 6.51 5.33 8.79
8 4.35 5.43 6.27 5.22 8 6.74 8.21 10.12 24.92

12 6.80 9.65 10.37 11.12 12 9.54 17.61 15.57 64.91

1 0.75 2.86 0.75 1.89 1 0.50 0.68 0.53 0.51
4 1.94 3.73 1.94 8.22 4 0.92 1.23 0.97 1.41
8 2.75 6.71 2.75 27.79 8 1.52 1.83 1.53 2.60

12 4.20 11.11 4.20 73.89 12 2.03 4.55 1.75 5.51

1 0.29 0.25 0.29 0.31
4 0.88 0.85 0.88 1.18
8 1.75 1.26 1.75 2.38

12 3.07 1.97 3.07 3.67

Horizon

CPI

Employment Wages

Money Stock Exchange Rate

Interest Rate Budget Deficit

World Activity

BVAR UVAR BAR MIN

Source: Authors’ calculations.
(a) The figures in bold correspond to the lowest values of the statistic for each variable and forecast-

ing horizon.

Horizon

GDP

BVAR UVAR BAR MIN



fourth quarter of 1994, and the last, to the third quarter of 1996 (5). Like-
wise, Table VI.3 shows the related mean absolute errors.

Comparison of the forecasts of the BVAR and UVAR models reveals
the striking instability of the forecasts of the UVAR model, which is espe-
cially severe in the case of inflation. The erraticness of these forecasts is
a consequence of the fact that the model overfits, and therefore extrapo-
lates on the basis of relationships between variables which have a signifi-
cant non-systematic component. In contrast, the BVAR model stands out
both for the stability of the forecasts, as new information is included, and
for the closeness of its forecasts to the values actually observed, even for
long forecasting horizons. Comparison of the BVAR and BAR models
also, on balance, puts the latter in a negative light. Despite not suffering
from problems of instability, the forecasts of the BAR model are, in the
case of inflation, very different from the actual rates. Finally, an analysis
of the forecasts of the BVAR and MIN models shows that the MIN infla-
tion forecasts are not at all accurate, whereas its forecasts of GDP are of
a considerably higher quality.

Finally, if the mean absolute error in the period Q1 1990-Q4 1996 is
compared (see Table VI.2) with that of the period Q1 1995-Q4 1996V
(see Table VI.3), the better forecasting performance of the BVAR model
stands out both in the case of the CPI and GDP and at the different fore-
casting horizons.

In short, the following conclusions can be drawn from the results pre-
sented.

1) In forecasting terms the BVAR model tends to be superior to the
other models considered. This superiority is observed both at dif-
ferent forecasting horizons and for different variables.

2) The forecasting superiority of the BVAR model with respect to
the alternative models considered is especially clear when the in-
flation rate is forecasted, when the differences are very signifi-
cant.

3) In general, there are advantages to be gained from using a multi-
variate rather than a univariate approach when forecasting. This
suggests that the interrelationships captured by the model are
important.

4) There are considerable advantages to be gained from an optimal
selection of the prior information.
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(5) The model is re-estimated with each observation. The prior distribution used does
not vary.



VI.2. The predictions of analysts and forecasts
of the BVAR model

With regard to the applications of a forecasting model, attention is
usually focused on the point forecast of the variables considered. In the
previous section average forecasts were presented for the main macroe-
conomic magnitudes of the Spanish economy considered in this work,
corresponding to different quantitative models. It is this type of forecast,
moreover, which is usually published periodically by the various analysts
who follow the Spanish economy. Accordingly, it is of interest to compare
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CHART VI.1

COMPARISON OF BVAR AND UVAR
MODEL FORECASTS (a)

Sources: Instituto Nacional de Estadística and authors’ calculations.
(a) The inflation data for 1995 are adjusted for the effect of changes in indirect taxation.
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the results of the multivariate model BVAR with the forecasts made by
different analysts. For this purpose, Chart VI.4 shows the errors in the in-
flation and growth forecasts made at end-1994 for the year 1995, both by
the BVAR model and by a set of national and international analysts, and
the exercise is repeated with the values forecast at end-1995 and those
eventually observed in 1996 (6). If the set of forecasts made in both years
is compared with the data eventually observed, the following points are
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CHART VI.2

COMPARISON OF BVAR AND BAR
MODEL FORECATS (a)

Sources: Instituto Nacional de Estadística and authors’ calculations.
(a) The inflation data for 1995 are adjusted for the effect of changes in indirect taxation.

(6) The forecasts of the different analysts are taken from the January 1995 and Jan-
uary 1996 editions of the publication Consensus Forecasts.
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particularly striking: 1) all the analysts make errors in their forecasts of in-
flation and economic growth, which is consistent with the fact that fore-
casting is a complex task surrounded by uncertainty; 2) the general opti-
mism of the forecasts for economic growth both for 1995 and 1996; 3) the
pessimism of private analysts with regard to the possibility that the Span-
ish economy would see a notable reduction in the inflation rate in 1996;
and 4) the forecasts of the BVAR models were closer to the values actu-
ally observed. It seems to follow, therefore, that the BVAR model pro-
vides different, and therefore useful, information from that published by
other sources, using different tools.
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CHART VI.3

COMPARISON OF BVAR AND MIN
MODEL FORECASTS (a)

Sources: Instituto Nacional de Estadística and authors’ calculations.
(a) The inflation data for 1995 are adjusted for the effect of changes in indirect taxation.
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VI.3. Forecasting, uncertainty and the evaluation of targets

The forecasts used in Chart VI.4 were point forecasts (i.e. a single fig-
ure was given) of the future values of inflation and economic growth.
However, as commented above, given non-negligible uncertainty which
surrounds economic forecasts, no user should be satisfied with the pre-
sentation of a single figure for the future value of a macroeconomic mag-
nitude and they should therefore demand a measure of the uncertainty
associated with the mean forecast.

To have a measure of the uncertainty associated with the forecast is
highly informative, because it allows not only the precision with which the
forecast is made to be evaluated (the greater the uncertainty, the less rel-
evant the point forecast), but also how different actual values are from the
forecasts. In short, when attention is focused exclusively on point fore-
casts, very important information is disregarded that would help users to
assess their accuracy and arrive at a fully informed opinion.

Despite these considerations, economic authorities, international or-
ganisations and private institutions rarely present forecasts accompanied
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TABLE VI.3

MEAN ABSOLUTE FORECASTING ERROR (a)
Period 1995:I - 1996:IV

1 quarter 0.24 0.47 0.40 0.42
2 quarters 0.32 0.47 0.57 0.74
3 quarters 0.35 0.73 0.73 1.25
4 quarters 0.47 1.32 1.04 1.82

1 quarter 0.10 0.22 0.12 0.33
2 quarters 0.26 0.56 0.29 0.63
3 quarters 0.47 0.97 0.57 0.85
4 quarters 0.66 1.10 0.88 0.79

Horizon
Models

CPI

BVAR UVAR BAR MIN

Source: Authors’ calculations.
(a) The figures in bold correspond to the lowest values of the statistic for each variable and forecasting

h o r i z o n .

Horizon
Models

GDP

BVAR UVAR BAR MIN
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CHART VI.4

INFLATION AND GROWTH IN 1995 AND 1996 BVAR MODEL AND PRIVATE-SECTOR
PREDICTIONS ONE-YEAR FORECASTING ERRORS (a) (b)

Sources: Consensus Forecasts and authors’ calculations.
(a) Forecasting errors expressed as the percentage point difference from the actual annual average

rate.
( b ) The private-sector forecasts correspond to the January editions of the publication Consensus

Forecasts. The institutions considered are:AB Asesores, AFI, Banco Bilbao Vizcaya, Banesto, BCH,
CEPREDE, FG Valores y Bolsa, FIES, JP Morgan-Madrid and Universidad Carlos III.
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by uncertainty measures. On occasions this may be due to a gap in the
theory, since many types of models give no results for confidence inter-
vals in terms of the growth rates of the series. This is the usual format in
which macroeconomic forecasts, and in particular forecasts of GDP or
the CPI, are presented. To illustrate the importance of giving a measure
of the uncertainty associated with a forecast, Chart VI.5 presents, by way
of example, the calculation of confidence intervals for the inflation and
growth forecasts of the BVAR and UVAR models.

Specifically, the chart shows the values between which (according
to the model, and with data to the fourth quarter of 1995) the projected
inflation rate for 1996 and 1997 should lie with a probability of 25 per-
cent (dark grey area), 50 percent (the light and dark grey areas), and 75
percent (all three areas of the chart). As can be seen, the uncertainty
associated with the forecasts increases with the horizon of the forecast
and is by no means negligible. Comparing the BVAR and UVAR fore-
casts, the high uncertainty associated with the projections of the latter
model is notable, which considerably reduces the usefulness of its fore-
c a s t s .

The usefulness of obtaining the probability distribution of the fore-
casts is not limited to providing a measure of their degree of reliability; it
can also be used for other purposes such as assessing the probability
that a variable will be above or below a given value. This application is
especially important when a central bank sets direct inflation targets (7),
as the Banco de España has been doing regularly since end-1994.

It is naturally of interest to assess the probability that the monetary
objectives set will be attained. Once the probability distribution of the
forecast inflation rate is known, the problem is one of estimating the cu-
mulative probability within the target range. Chart VI.6 illustrates the na-
ture of the problem. If an inflation rate below a given value is defined as a
monetary policy objective (depicted in the chart as «target»), the probabil-
ity that this objective is attained is expressed quantitatively by the value
of the area below the probability density function for values less than the
target value. Thus, this probability would be represented by the shaded
area in the chart, being bounded from above by the probability density
function and to the right by the target value.

For the purposes of illustration, Chart VI.7 shows how the probability
of attaining the intermediate inflation reference fixed by the Banco de Es-
paña (8) for the last few months of 1997 has changed. This reference in-
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(7) Another no less important concern would be the establishment of a reference path
for inflation that leads to attainment of the target set. An analytical method which can be
used to estimate these paths is found in Álvarez, Delrieu and Jareño (1997).

(8) See Banco de España (1996).



volved placing the inflation rate at end-1997 close to 2.5%, so that the
year-on-year growth of consumer prices during 1998 would draw close to
2%. Given that the reference was not established precisely, both a lax in-
terpretation -placing the inflation rate in the final quarter of 1997 below
2.7%- and a strict interpretation -ensuring that the rate of change of con-
sumer prices is below 2.5%- have been considered. It can be seen in
Chart VI.7 that, on the information available in the third quarter of 1996
(when the target was still not defined), the probability of attaining it was
around 23%, if a strict interpretation is adopted, and 36%, under a more
lax interpretation, while in the fourth quarter of 1996 (with the target al-
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CHART VI.5

UNCERTAINTY OF THE FORECASTS (a) (b)

Sources: Instituto Nacional de Estadística and authors’ calculations.
(a) Forecasts based on information to the fourth quarter of 1995.
(b) The shaded areas delineate the region of uncertainty for the forecast associated with their corre-

sponding probability level.
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ready established), the probabilities of attainment were 50% and 66%, re-
spectively, depending on whether a strict or lax definition is used. In the
first half of 1997 the CPI trended very satisfactorily, the year-on-year rate
falling from 3.2% in December to 1.6% in June. This sharp reduction led
to a considerable improvement in prospects for inflation for the year as a
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CHART VI.6

PROBABILITY DISTRIBUTION
AND ATTAINMENT OBJECTIVES

Source: Authors’ calculations.

CHART VI.7

PROBABILITY OF ATTAINMENT OF THE INTERMEDIATE
INFLATION REFERENCE FOR 1997

Source: Authors’ calculations.
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whole and a significant increase in the probability of meeting the objec-
tive. Thus, with a strict interpretation, in the first and second quarter of
1997 probabilities of 88% and 99.95% were reached, which rise to 95%
and 99.9%, respectively, under a lax interpretation.

Besides enabling the probability of attaining the inflation targets set in
the monetary programming to be assessed, there are numerous applica-
tions which derive from a full characterisation of the probability distribu-
tion of the forecasts. By way of example, Chart VI.8 shows the change in
the probability that the growth forecast for 1997 would exceed that fore-
cast for 1996, as the figures for 1996 and 1997 became available. From
the chart it can be seen that the development of the Spanish economy
during 1996 did not offer clear signs of acceleration in 1997. The data of
the first quarter of 1997, however, involved a very notable advance in the
growth process, clearly showing that the probability of acceleration of ac-
tivity with respect to the previous year was close to 100%.

VI.4. Some simulations

One advantage of multivariate models like those considered above,
over univariate models, is the possibility of performing simulations; i.e.
estimating the effect on certain variables of changes in the paths of oth-
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CHART VI.8

PROBABILITY OF ACCELERATION
OF GROWTH IN 1997 (a)

Source: Authors’ calculations.
(a) Acceleration of groth is defined as higher growth in 1997 then in 1996.
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CHART VI.9

SIMULATION OF WAGE MODERATION
BVAR MODEL

Source: Authors’ calculations.
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CHART VI.10

SIMULATION OF WAGE MODERATION
UVAR MODEL

Source: Authors’ calculations.
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CHART VI.11

SIMULATION OF WAGE MODERATION
MIN MODEL

Source: Authors’ calculations.
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CHART VI.12

SIMULATION OF EXCHANGE RATE DEPRECIATION
BVAR MODEL

Source: Authors’ calculations.
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CHART VI.13

SIMULATION OF EXCHANGE RATE DEPRECIATION
UVAR MODEL

Source: Authors’ calculations.
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CHART VI.14

SIMULATION OF EXCHANGE RATE DEPRECIATION
MIN MODEL

Source: Authors’ calculations.
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ers. This section considers certain simulations using the BVAR, UVAR
and MIN models, focusing, for the sake of brevity, on the effects on infla-
tion and economic activity of changes in nominal wages and the ex-
change rate.

A frequently held opinion in macroeconomics is that nominal wage
moderation is necessary in order to move towards a situation of price sta-
bility. To analyse the effect of a reduction in wage inflation in the different
models considered a path is imposed whereby wage growth gradually
slows, so that, after two years, its year-on-year rate stands two percent-
age points below the unconditional prediction. From a theoretical view-
point, the reduction in nominal wages, in a context of some price rigidity,
can be expected to produce a reduction in real wages thus making it prof-
itable for firms to hire more workers and expand their output. It is this in-
crease in supply which exerts a downward pressure on prices, so en-
abling the inflation rate to be reduced. Charts VI.9, VI.10 and VI.11 show
the results of these simulations for the VAR, UVAR and MIN models. Be-
sides the disparity in the unconditional predictions of the different models
it is worth emphasising the following aspects:

1) the coincidence, in qualitative terms, of the conclusions of the
various models;

2) the existence of an inflation-reducing effect;

3) the increase in economic activity, and

4) the disparity in the magnitude of the estimated effects.

The effect of exchange rate changes on prices and the level of activ-
ity is usually the object of considerable attention. From a theoretical
viewpoint, although it is usually agreed that depreciations are generally
accompanied by price rises, the response of the level of activity to a
downward movement is ambiguous. On the one hand, a depreciation of
the nominal exchange rate makes imported goods more expensive, at
the same time as it cheapens domestic goods. The effect of the im-
provement in competitiveness is to increase net exports and output. On
the other hand, a contraction in activity may be observed, as a conse-
quence of the shift in aggregate supply. This is because a devaluation
increases the price of imported intermediate goods used in productive
processes. If there is no possibility of fully substituting these goods,
there will be an increase in production costs which causes a contraction
in supply. This, in turn, will tend to raise the prices of goods and reduce
the level of activity.

To analyse the effects of a permanent devaluation of the nominal ex-
change rate, the effects estimated in the BVAR, UVAR and MIN models
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are shown in Charts VI.12, VI.13 and VI.14. The most notable features of
the simulations are the following:

1) the qualitative disparity of the impact of the devaluation on
prices, and

2) their coincidence in signalling an expansionary effect on the level
of activity.

It might be particularly striking that both the UVAR and the MIN mod-
els find that a depreciation leads to reductions in the prices of domestic
goods. However, it should be noted that the forecasting performance of
these models is much less satisfactory than that of the BVAR model, so
that the relationships captured between the different variables are much
less reliable. Indeed, many authors maintain that little attention should be
paid to the simulations obtained from models whose forecasting perfor-
mance is unsatisfactory.
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VII

CONCLUSIONS

The use of VAR methodology has grown in recent years, to become a
tool commonly used by empirical macroeconomists. This expansion in its
use has been based on its three basic features: objectivity, reproducibility
and the systematisation of the way in which the econometric model is
built. These features underlie the description of the methodology set out
in part one of this book, which commenced with a brief historical outline,
before going on to address the questions of formulation, specification, es-
timation and identification of VAR models. The description concluded with
an explanation of its possible applications.

The second part of the paper described a BVAR macroeconometric
model which has been used regularly by the Banco de España Research
Department for projecting the main magnitudes of the Spanish economy,
as well as to carry out simulation exercises, and which constitutes an in-
strument to assist in the making of economic policy decisions. The model
was built to advance the empirical characterisation of the Spanish econo-
my using Bayesian techniques and elements of time series analysis.

The exercises performed with the BVAR model and its comparison
with alternative quantitative models produce a number of results. First,
with a view to prediction, the use of Bayesian techniques is seen to be a
useful way of extracting stable relationships between the set of macroe-
conomic magnitudes considered. Nonetheless, it is necessary to empha-
sise that simple Bayesian approaches (in which there is no calibration of
the prior distribution, a distribution based on empirical rules for the be-
haviour of macroeconomic time series being used instead) fail to extract
the most stable relationships. Meanwhile, it is confirmed that the interrela-
tionships between the different variables considered help to forecast the
future behaviour of the different series modelled -and in particular the in-
flation rate- with greater accuracy than if only their own past is consid-
ered; i.e. it is worth making the effort to move from univariate approxima-
tions to more complex multivariate approaches. Moreover, from a predic-
tive viewpoint, it is worth pointing out that the forecasts derived from the
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BVAR model for the Spanish economy are more accurate than the pre-
dictions made by a wide set of analysts.

Although the forecasting advantages of the model presented seem to
be significant, another notable aspect of the BVAR model is its degree of
interpretability. Both the dynamic relationships revealed by an examina-
tion of the impulse response functions and the results of the simulations
presented seem to suggest that the interpretation of the BVAR model is,
generally, more in line with the results of economic theory that that of the
other models considered. Nonetheless, it should be stressed that, al-
though the interrelationships detected allow more accurate forecasts to
be obtained and the responses can be interpreted in the light of econom-
ic theory, such interrelationships are quantitatively small.

As has been emphasised in this paper, economic forecasting is an in-
herently difficult exercise, as reflected in the uncertainty normally associ-
ated with it. The logical response to this situation should be to try to char-
acterise such uncertainty, instead of ignoring it and giving a false impres-
sion of rigour and precision. One advantage of closed econometric mod-
els, like the one used here, is that they allow the probability distribution of
forecasts to be characterised. Moreover, once this distribution has been
obtained, it is simple to evaluate the probability that certain events will oc-
cur, such as the attainment of inflation targets.

In short, the experience acquired from developing th∏e model and
the results obtained appear to indicate that it is a useful tool for analysing
and projecting the main macroeconomic magnitudes of the Spanish
economy. 
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